NORTHWESTERN
UNIVERSITY

Dept. of Mechanical Engineering

Robotic Control with Gyroscopic Sensing

ME 224 — Final Project
Proi. Espinosa

Team #1
Stefan Bracher
Jason Lintker
Fabian Wittmer

Table of Contents

Abstract
Introduction

Boe-bot Assembly

Basic Components

BasicStamp

Servos

Gyroscope
Overview
Implementation

A/D Converier
Overview
Implementation

Computer Programming
tabview — A/D Conversion
BasicStamp

Data Flow
Feedback Conirol

Testing

Challenges
Conclusions

Appendix A — Labview

Appendix B — Basic Stamp

Introduction

Each week during this guarter we have conducted labs individually to enhance
our skills with LabVIEW and electronic systems. During the final project, we
have used the combined knowledge of three team members to create a robot
with controlled motion. Our goal was to program a desired route for the robot to
follow and use gyroscopic sensing 1o enable the robot to correct any deviation
from that route.

Boe-bot Assembly

Basic Componenis

The original Boe-bot Kit consists of two servo motors and a printed circuit board
attached to an aluminum chassis. A breadboard provides a convenient interface
for additional electronic devices. This very simple struciure allows users to
customize the robot design with a variety of features and components.

BASIC Stamp

The BASIC Stamp 2 module contains its own processor, memory, clock, and an
interface with 16 11O pins. The BASIC Stamp program we created (see A 2) and
wrote onto the module allowed us to define a specific route for the robot to follow.
Additional features of the program enable the robot 10 sense any deviation from
the desired direction. The robot then responds with a small rotation to correct the
error.

Servos

Two small servo motors are attached o the wheels to drive the robot with a high
degree of accuracy. Servos use built in circuitry o monitor the signal from a
potentiometer which is connected to the output shaft. In this way, the servo can
control the angle of the output shaft at all times. This angle is controlled with
coded signals sent from the circuitry of the robot. Changes in the signal cause
changes in the angular position of the shatft, creating mation of the robot. This
type of servo control is referred 1o as Pulse Coded Modulation. In basic terms,
the length of the pulse determines the direction and speed of rotation.

Gyroscope

Overview

A classical gyroscope is a device consisting of a spinning mass, typically a disk
or wheel, mounted on a base so that its axis can turn freely in one or more
directions and thereby maintain its orientation regardless of any movement of the

base. When spinning, the oyroscope
has special properties. Many spinning
objects exhibit some of these properties;
the rotation of the earth about its axis
pives it the properties of a huge
gyroscope. Once a gyroscope starts 1o
spin, it will resist changes in the
orientation of its spin axis. For example,
a spinning top resists toppling over, thus
keeping its spin axis vertical. If a torque,
or twisting force, is applied o the spin
axis, the axis will not turn in the direction
of the torgue, but will instead move in a
direction perpendicular to it. This motion
is called precession.

The upcoming technology, however, is
part of the Micro-Electro-Mechanical Systems family (MEMS). This
implementation does consist of a vibrating mass rather than a spinning one. The
principle used to measure the angular acceleration is the Coriolis effect
Whenewver a mass is moved in a rotating system a force act on the mass. This
force is called Coriolis force and is proportional 1o the angular velocity of the
system and the velocity of the mass.

MEMS gyroscopes are already used in the car industry for navigation systems.

Implementation

The gyroscope used in this project is the ADXRS180ABG, built by Analog
Devices. It induces a voltage signal proportional to the angular rate of change.
Up to 150 degrees per second are detectable. The power supply is a 5 Volt DG
signal. The output ranges from D.25V 1o 4.75V. No motion equals 2.5V

In order to check the gyroscope is working, we hooked it up to an oscilloscope. In
the resting state we got 2 signal of 2.48V.
When turning the gyroscope, the signal in-
or decreased depending on the direction.
Usually, a calibration is needed for further
operations. This means the gyroscope is
spun at a different velocities, |
simultaneously the wvoltage output is
acquired. With a curve fitting tool one gets
the voltage in dependency of the angular
rate of change.

However, for several reasons we decided
on not to do a classical calibration. First of
all, neither the absolute voltage value nor
the angular rate of change is of interest in

fg. 2 Gymsoope

this project. We are only interested in the angle. So, the angular rate of change
needs 1o be integrated aonce. By calibrating before the integration errors would be
summed up and propagate. Therefore a calibration with respect to the angle is
reasonable.

In the numerical integration approach we use, a constant time increment ot one
unit is assumed. Thereiore, the integrated value depends on the frequency of
data acquisition. The freguency in turn depends on the amount of code in
between each cycle. This means that a calibration of the gyroscope is not
reasonable until the final version is ready. Only at this point the parameters can
be adjusted.

A/D Converter

Overview

An AD Converter converts a voltage in a digital number. We used an
ADCO804LCN, as our basic stamp had no A/D converter included fjust digital
inputs).

Specifications of the ADCO803LCN: _
D MPACKAGES

- 8bit converter o —_

- Can be used with internal or external clock EE . 2y vee
- Analog input range 0 V to VCC Fo| 2| [19] cLk R
- Single 5V supply " WR'E EI oo

- Guaranteed specification with 1 MHz clock S E EI O
WE 18] D@
ving+i[8] o] e
".“|r-.]':—f'E EI ™
acno[3] [13] os
vRer2[2] o

D GHD |10] D7

TOP VIEW

Fig. 4 Pins of the ADCOSMLCN

AAN PP T

fg 3 AD converler

Function

The conversion is started with a pulse at the WR pin, and the CS pin on low. As it
is an 8bit converter, VOO will be represented by the number 256 and OV with 0.
When the conversion is complete, the INTR pin will make a high-low conversion,
what could be used as an interrupt for a processor. Setting the BRD and CS pin to
low will clear the interrupt and enable the output pinsg DO-DY for reading.

Implementation

The ADCO804LCN can be used in several different modes. However we decided
that continuous conversion suits our purposes the best.
The following pin connection was supposed by the spec sheet:

10k \
W
TE 20 Voo T
e i9ClKR| |
18 00
AL — DEEII
ClEIN] 4 0Bl =
mrl = 16 02
DB2
"."ml"l'l [& ND 15D3
7| TR
W .—.I
= —— DE4
AGND & 3 D5
DES
5 12 DB
o
DB7
SLO0025

Fig. 5 Continuous mode connection

The output pins DO-D7 with OV as logical low and 5V as logical high {what
corresponds 1o the specifications of the basic stamp) are connected to the basic
stamp.

Setting the CS and RD pins on permanent low will always clear the interrupt and
enable the output pins for reading. To be able to use the internal clock, CLK R

has to be connected with a 10k resistor to CLK IN and CLK IN with a 56pF

compensator to ground.
To start a conversion, there has to be a pulse on the WR pin. Instead of the logic
on the left side of the spec sheet, we use the basic stamp 1o send this pulse.

Computer Programming

LabVIEW — A/D Conversion

LabVIEW — A/D Conversion

For there were some difficulties with the acguisition of the 8bit A/D converter, a
temporary solution was needed urgently. We opled for a software based
LabVIEW solution. The gyroscope yields an analog signal ranging from 0.25 to
4.75 Volts. The DAQ board has a higher resolution than 8bit and represents 5V
with 2048. Therefore the read value has 1o be divided by 8 o convert it to 8hit.

T~k

i
+

[
B
Ik

EHQ E’Hé
H = H i~
Mg (Mg
H e | -

fig.2 LabVIEW A/D comverler

We then used the LabVIEW function “number to Boolean array”™ which yields
eight true false statements. Each stalement is the input of a trueffalse case
structure which sets the respective port on the DAQ board to low or high. Those
eight ports equal the outputs of a hardware based AD converter.

BasicStamp Programming

Structure of the program

| Variable declaration and initialization |

v

‘ Path | (direction 0°, 200 steps) ‘

!

| Path 2 {direction 90°, 100 steps) ‘

.

| Path 3 (direcrion 180°, 90 steps) |

hd
‘ Path 4 (direction 225°, 140 steps) |

!

‘ Path 3 (direction 360°, 1 step) ‘

The program begins with the Variable declaration and initialization followed by
sequences for the different paths 1o take. Each path sequence specifies the
{absolute} direction and the number of steps to go and calls the subrouting
‘coordinates” 1o execute these paths.

The teedback control of the gyro is implemented in the coordinate subrouting, the
robot can only make a step forward, if the error between actual and desired angle
is very small. As soon as the error exceeds a certain amount, the robot has to
correct its path by turning clock, or counterclockwise.

v

As long as #stops < desiced steps

!

Read mming speed

v

lnegrate speed to angle

v

Compute eccor between acmal and desiced angle

|

PLD control, generation of command signal

v

< lowmnge?

Command

=highrange?

Between low- and highrange?

¢

!

Turn clockw iz

!

Turn clockwise

Go one step fooward ((ncrease #seps)

Program code

Compiler information:

$STAMP BS2}
$PBASIC 25}

Varable declaration:

speed VAR Word
angle VAR Word
steps VAR Word
direction VAR Word
eror VAR Word
emorsum VAR Word
emordiv VAR Word
lasterror VAR Word

i VAR Word
command VAR Word

Tells the compiler that we use the Basic Stamp?
Specifies the program language used: PBASIC 2.5

The turning speed
The absolute angle
Number of steps to take

Direction {absoclute angle) to take
The error between desired and actual direction

the sum of the emor
the change of the error

the last error before the current one

& counting variable for steps

the command produced by the P ID controller

lowrange COMN 32000 A vanable used for the control (see |ater)
highrange CON 32200 An other variable used for the control
offset VAR Word The offset of the gyroscope at zero speed

Inltlalization of the varlables:

angle=0
lasterror=0
error=0
erorsum=0
i=0
LOW 11 A pulse is sert to the A/D corwerer to strt the
corversion
PAUSE 200
HIGH 11
PAUSE 200
offset=INO+(IN1*2) +{ IN2"4) +{ INZ"8) +{ INAT18] +{ INE*32] +{IN&"B4 |+ (IN7 ™1 28)
The zero speed offset of the gyroscope is read
[At zero speed the gyro produces around 2.5
LOW 11

PAUSE 1000

The main program

‘path 1

steps=200 Go 200 steps

direction=0 go indirection 0 (=0

GOSUB coordinates call of the subroutine "coordimates” to do the path
'path 2

i=0 reset number cf steps

steps=100 go 100 steps

direction=4875 go in direction 4857 (Experimentally determined to be 909
GOSUB coordinates call of the subroutine "coordimates” to do the path
'path 3

i=0 reset number of steps

steps=00 go 90 steps

direction=9750 go in direction 9750 {Experimentally determined to be 1809
GOSUB coordinates call of the subroutine "coordinates” to do the path
‘path 4

i=0 reset number of steps

steps=140 go 140 steps

direction=12188 go in direction 12188 (Experimentally determined to be 2259
GOSUB coordinates call of the subroutine "coordimates” to do the path
‘path &

i=0 reset number of steps

steps=1 go 1 step (just tum)

direction=19000 go in direction 19000 (Experimentally determined to be 3809
GOSUB coordinates call of the subroutine "coordimates” to do the path
END

10

coordinates subroutine

coordinates:

resume: jump marker

DO WHILE (ie=steps) as long as steps<i

GOSUB ReadvValue read the speed

eror=direction-angle compute the error

‘errorsLMm=arrorsum-+emor compute the errorsum (fot the | part of PID, not used)
‘errordiv=lasterror-error compute the errordifference (for the D part of PID, nor

used)'lasterror=arror

'PID gontral
command={2*error]-{2*emrodiv)'+{1*errorsum) PID control computates command signal
{Originally we wanted to implement full P ID, but P turned out

to be good enough)

IF ABES{command)<=100 THEN gostraight if command small call subroutine go straight
IF fcommand+32100) <lowrange THEN tumcow command < lowrange call tumcow™
IF {command+32100)>highrange THEN turncw command >tighrange call turncw®

"The addition of 32100 is used to avoid problem with negative numbers

LOOP
RETURN

gostralght subroutine

PULSOUT 13, ¥ send forward pulse to left wheel

LOW 13

PULSQUT 12, 737 serd forward pulse to right wheel

LOwW 12

PALSE 20

i=i+1 increment the number of steps taken
GOTO resume jump to resume {in coordinates subroutine)

turncew subroutine:

PULSQUT 12, 745 serd fonward pulse to right wheel

LOW 12

PULSQUT 13, 748 send backward pulse to left wheel

LOW 13

GOTO resume jump to resume {in coordinates subroutine)

turncw subroutine:

PULSQUT 12, ¥¥5 send backward pulse to right wheel

LOw 12

PULSQUT 13, 785 serd backward pulse to left wheel

LOwW 13

GOTO resume jurmp to resume (in coordinates subrouting)

11

ReadVvalue subroutine:

HIGH 11 Start AD conversion
speed=INO+H{INT1"2) +{IN2*4)] +{IN3"8) +{ IN4 " 18] +{IN5*32)+{INB 64) +{ IN¥ "1 28] -offset

cdlculate the speed

IFNOT ABS(speed)<2 THEN suppresses small (error] signals
angle=angle+speed integrate the angle

ENDIF

LOW 11

Testing

A great deal of testing was necessary to perfect the parameters of our BASIC
Stamp programming. Modifications were made 1o the pulse trains 1o ensure that
the servos could create both straight-lineg motion and smooth turning maotion in
both directions.

Testing was also vital 1o the creation of a reliable control loop. We discovered
that although a control algorithm may work well in theory, it may not perform well
in actual tests. By testing a variety of diiferent algorithms and adjusting the error
sensitivity, we were able to create a very stable control system for our robot.

Challenges

The primary challenge faced by our team was the implementation of gyroscopic
contral. In the early stages of the project, we attempted 10 use several different
control algorithms in our BASIC Stamp programming. The first version of our
control loop was a simple proportional control {error = setpoint — measurement).
While it was obvious that the logic behind this control was sound, the application
1o our robot created some problems. When attempting to correct for error, the
robot would often overshoot the target direction. The addition of a derivative
control, and eventually a complete PID control, didn't offer much improvement.
The problem was finally eliminated after fine-tuning the turning speed and error

range.

An additional challenge faced by our team was the addition of the A/D converter
to the robot circuitty. While the addition of the converter allowed our robet to
operate independently from LabVIEW and the associated cables, the installation
was somewhat complicated. An additional breadboard was attached to the
chassis 1o create adeguate room for the chip and the additional wiring. Since the
specifications for the chip did not provide a clear wiring guide, several wiring
varigtions were construcied before the chip could properly convert the signal.

12

Conhclusions

In conclusion, our team has clearly demonstrated the ability to create a functional
system for gyroscopic control on a robot. Through the integration of a MEMS
oyroscope and BASIC Stamp programming, our robot was able 1o successfully
follow a specified route. Additionally, the robot was able to constanty manitor
feedback from the gyroscope 1o correct for any deviation from the desired path.
Owerall, our team is very satisfied with the accuracy of our control system and the
performance of our robot.

13

Appendix A — Labview

MIBL

14

Eoolean &

FTE]

Appendix B — Basic Stamp

‘[$STAMP BS2 |
'[$PBASIC 2.5}

"Variables

speed VAR Word
angle VAR Word
steps ¥ AR Word
direction VAR Word
error VAR Word
errorsuim YAR Word
errordiv VAR Word
lasterror VAR Word

1 VAR Word
command VAR Word
lowrange CON 32000
highrange CON 32200
offzet VAR Word

‘DEBUG "start”

Tnitialization
angle=0
lasterror=0
error=_0
errorsuim=~0
i=0

LOW 11
PAUSE 200
HIGH 11
PAUSE 200
offset=INOH+ TN 1¥2 H (TN 2¥4 1 (TN 3* - IN4* |03+ INS*32 H(ING*¥ o+ INT*128)
LOW 11

PAUSE 1000

‘main programm

‘path 1
steps=200

15

direction=0
GOSUB coordinates

‘path 2

i=0

steps=100
direction=4875
GOSUB coordinates

'path 3

i=0

steps=20
direction=9750
GOSUB coordinates

'path 4

i=0

steps=140
direction=12158
GOSUB coordinates

'path 5

i=0

steps=1

direction= 19000
GOSUB coordinates

END

"subroutine

coordinates:

resume:

DO WHILE (i<=steps}
'DEBUG SDEC 7 i
‘DEBUG SDEC 7 angle
'DEBUG SDEC 7 error
'DEBUG SDEC 7 offset
‘DEBUG SDEC 7 speed

‘read angle

GOSUB ReadValue
‘tompute the errcr
error=direction-angle
'BITOTSUIN=ETT Or SUIT-+HerTor
errordiv=lasterrcr-error

16

lasterror=error

'P control
comimand={2*¥error)-{ 2*errordiv)+{ 1 ¥*errorsum)

‘cases

IF AB3{command =100 THEN gostraight ‘'go straight
IF {command+-32100)<lowrange THEN turncew ‘turn left
IF (command+32100x-highrange THEN mrncw 'turn right

LOOF

RETURN

gostraight:

PULSOUT 13, 791 'left weel
LOW 13

PULSOUT 12, 737 'right wesl
LOW 12

PAUSE 20

i=i+1

GOTO resume

TUrTCE Wl

PULSOUT 12, 745

LOW 12

PULSOUT 13, 748

LOW 13

'DEBUG "counterclockw ise™
GOTO resume

turncw:

PULSOUT 12, 775
LOW 12

PULSOUT 13, 735
LOW 13

'DERUG "clock wise'
GOTO resume

17

ReadValue:

HIGH 11

speed=TNOH(IN 1#2 H-(TN2*4 - (TN 3* E3H{IN4* 163 INS * 32 H-(ING* S+ TNT*128)-
offset

IF AB3({speed)<2 THEN
‘offser=otiser+speed
ELSE
angle=angle+speed
ENDIF

LOwW 11
RETURN

18

