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ABSTRACT 
 
The inverse dynamics of the Fanuc Arc Mate M16iB 

robot to lift a 2 kg block at 0.2 m vertically in 10 seconds is 
investigated. To achieve this goal, the trajectory file containing 
the twist of all links angles and the corresponding time 
derivatives has been computed offline using the projected 
resolved-motion rate algorithm. Then kinematics and dynamics 
computation was achieved to determine the constraints and 
external wrenches acting on the robot end-effector with the 
forces and torques exerted by the actuators.  The algorithm 
developed allows to verify if the motors can handle the torques 
needed to follow the desired path with the dynamics. The results 
show all joint motors torques required in order for the robot to 
move the block vertically at 0.2 m for 10 seconds. 

 
INTRODUCTION 
 

The first part of this work is similar to project two 
“Deburring with the Fanuc M16iB” [1], [2], where we 
developed the projected resolved-motion rate algorithm to 
calculate the inverse kinematics (IK) in order to deburr the four 
corners of a spherical block.  In this project, we replace the tool 
at the end-effector (EE) with a handle.  The robot task as well 
differs, as the robot lifts the square block upward 0.2 m in the 
same direction for 10 seconds. We still compute the trajectory 
with the projected resolved-motion rate algorithm to find the 
twists of all links. 

 
In the second part the inverse dynamics with the 

purpose to allow real-time dynamic control of the manipulator 
is introduced. Now we include the twists time derivative of all 
links and the corresponding mass centers position that are 
essential to the inverse dynamics kinematics computations. The 
inverse dynamics also consist of dynamics computations with 
Newton-Euler algorithm.  This algorithm finds the force and 
torque required by joint motors to complete the task.   

 
In this paper, we first present the path development for 

that task, the twist of all links and their time derivative and the 
recursive inverse dynamics to find the joint motors torques 
input. The results are then presented and discussed. 
 

PATH DEVELOPMENT 
 

It is necessary to develop a path in order to compute 
the trajectory file for the robot simulator.  The trajectory file is 
the only input to the robot simulator and contains the joint 
angles that correspond to the points on the path for the task.  
 

The task to lift a block 0.2 m upwards requires the x 
and y coordinates of the points pf on the path to remain 
constant.  Therefore z is the only coordinate moving upward at 
discrete steps. The step size is varied in order that the step is 
biggest in the middle of the path and almost zero at the 
beginning and the end, thus producing smooth velocity changes.  
Given the orientation is constant when lifting the block, the 
correlating orientation matrix Qf is kept constant during the 
path.  Hence the path defines all Qf matrix as:  
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with the initial point  pf=[-0.2 0.6 0.38]T in meters.  
 
 
THE TWIST TRAJECTORY 
 

The twist trajectory involves finding the twist t of all 
links and their time derivative for all the Cartesian points in the 
path developed.  In the DH parameters, the tool transformation 
matrix is replaced with the identity orientation matrix and zero 
translations. This replacement makes the block look as an 
imaginary 7th robot link, which will help us to include its mass 
in the dynamic computations later on.  The initial twist t (or 
referred to as joint angles) of the manipulator is then found with 
the DK developed in [3].  Thereafter, all subsequent joint 
angles θ  corresponding to each Cartesian point pf in the path 
are computed with the projected resolved-motion rate algorithm 

in [2].  The joint angle velocities θ&  and acceleration θ&&  then 
follows by computing the time derivatives of each joint 
angleθ .   
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Once all time derivatives of the twist trajectory are 
known, the recursive dynamics can then be achieved.  The mass 
centers ρ  and inertia I of each link i however must be known 

and defined in the next frame coordinate system 1+iF , which is 

fixed to the body of link i .  These parameters are all available 
in [4]. 

 
 

RECURSIVE INVERSE DYNAMICS 
 
Recursive inverse dynamics algorithm relies on two 

procedures: the kinematics computations and the dynamics 
computations.  A brief description on both methods is provided 
below.  
 
Kinematics computations  

 
  The kinematics computations make use of an outward 
recursion algorithm with the Denavit-Hartenberg (DH)   
notation [5].  The position, velocity and acceleration 

( iii ccc &&& ,, ) vectors of each link are calculated as well as the 

angular speed and acceleration vectors ( ii ωω &, ) for all points 

in a path.  Further details on the algorithm are described below.  
 
The outward recursion algorithm is implemented as follows for 
each link: 
 

1.  The inputs to the function are the joint angles with 

their corresponding time derivatives iθ , iθ&  and iθ&& . 

2. The 4 x 4 transformation matrix Ti containing the        
3 x 3 orientation matrix Qi and  the 3 x 1  link length 
vector  ai computed with the DH parameters provided 

in [4] for the current coordinate system iF . 

3. The vector along the z-axis for all revolute joints in iF   

is always : 

      kei =  ,                                          

(2) 
where k=[0 0 1]T. We introduce this vector so we can 
later on build a three dimensional vector out of the one 
dimensional thetas. 

  

4. The angular velocity iω  is computed in the next frame 

coordinate system 1+iF  as indicated below : 

)( 1 iii
T

ii eQ ⋅+⋅= − θωω &  ,                 

(3) 

              with [ ]T0000 =ω . 

1−iω  as well as ii e⋅θ&  are always expressed in the 

coordinate system orientation i, thus they have to be 

premultiplied with 
T

iQ to bring them in the i+1 

orientation. 
 

5. The angular acceleration iω&  is also computed in the 

next frame coordinate system 1+iF  as follows:  

      )( 11 iiiiii
T

ii eeQ ⋅+⋅×+⋅= −− θθωωω &&&&&  , 

(4) 

with [ ]T0000 =ω& . 

 
 

6. The difference iδ  between link length vector  ai and 

the mass centers described by the vector iρ   is 

constant in iF   but it is transformed in the next frame 

coordinate system 1+iF  with 
T

iQ as described by:  

      ii
T

ii aQ ρδ −⋅= .            

(5) 

Where [ ]T0000 =δ . iρ  is already defined       

 in 1+iF  . 

7. The position of the origin ic  of the next frame 

coordinate system 1+iF is computed as follows:  

      iii
T

ii cQc ρδ ++⋅= −− )( 11  .                           

(6) 

Where [ ]Tc 0000 = . 

8. The  velocity  vector ic&  of the origin and its 

acceleration vector ic&&    are  also calculated in the next 

frame coordinate system 1+iF with :  

111 −−− ×= iiiu δω  

(7) 

iiiv ρω ×=   

(8)  
giving 

iii
T

ii vucQc ++⋅= −− )( 11&&                  

(9) 
and 

iiii

iiiii
T

ii

v

ucQc

×+×+

×+×+⋅= −−−−−

ωρω

ωδω

&

&&&&& )( 11111       

(10) 

with [ ]Tc 0000 =& , [ ]Tu 0000 =  and   
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[ ]Tgc 000 =&&  to introduce the gravity force   

g=-9.81 m/s2  in the manipulator. 
 

9. This process is repeated for all links n of the 
manipulator for all the points in the path.   

 
The trajectory of the end effector origin and its first and 

second order derivative ( 777 ,, ccc &&& ) is provided by the 

outward recursion algorithm. The procedure can easily be 
verified, as the second order derivative of the effector 
origin has to have an “acceleration” of one g in the vertical 
direction. 
 
The parameters calculated in this algorithm permits 
dynamic computations to find the joint motors torques 
necessary with the inward recursion algorithm.  

 
 

Dynamics computations 

 
The dynamic computation involves the computation of the 
torques to apply on joint motors for the task at hand. The 
torques required by the motors is calculated with the Newton-
Euler inward recursion algorithm explained in [5].  The inputs 
to this algorithm are the second order derivatives, the mass 
centers of the robot members and the block, the angular velocity 
and acceleration.  All these parameters change are evaluated for 
each joint angle for every point along the path. . 
 
The inward recursion algorithm implemented makes use of: the 
linear momentum and the conservation of angular momentum 
principle.  
 
First, the linear forces F applied to each joint are calculated for 
each point along the path using the principle of linear 
momentum: 
 

Principle of linear momentum: ∑=⋅ Fcm &&  

(11) 

Giving 1intint ++⋅= ijoiiijo FcmF &&  

 (12) 
where m defines the mass of the object.  

 
In this way, the inward recursion algorithm for all the joint 
forces is calculated by beginning with the force on the end 
effector F7. 
 
As said before, the block is treated like an additional robot 
member; hence its mass is easily included in the dynamic 
computations. However, attention still has to be put on the 
coordinate systems we are working in again. In order to 

calculate the joint forces in their own coordinate system, the 
transformation has to be completed the following way: 
 

1+⋅+⋅⋅= iiiiii FQcQmF && . 

(13) 
 
For the joint momentumsσ , the “principle of conservation of 
angular momentum” has to be applied. 
 
Principle of conservation of angular momentum: 

∑∑ ×+= FrML&  

(14) 

With  ωωω ⋅×+⋅+×⋅= IIcrmL OC &&&&  

 M=Momentums (includingσ ) 
 rxF=Momentums due to external forces 
 I=Rotational Inertia 

(15) 
 

Thus to find the joint momentums iσ  for each link i, the 

“conservation principle of angular momentum” equation is 
adjusted as follows: 
 

)( 11 ++ +×⋅+×⋅+= iii
T

iiiii FaQcmhQ σρσ &&&  

(16) 
With  

iiiiii IIh ωωω ⋅×+⋅= &&  

(17) 
 

 It is important to note that all joint momentums are 

expressed in the system 1+iF . As the coordinate systems have 

always been chosen so that the z-axis of the following 

coordinate system 1+iF  is in the direction of the rotational axis 

of joint i, the motor torques τ is thus equal to the third 

component of the correspondingσ . Also here the iσ  have to 

be computed by inward recursion for each point along the path. 
 
The resulting implementation of the inverse dynamics algorithm 
along with the complete code is available in ANNEX A. 
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RESULTS 
 
Path developpement 

 

The produced trajectory for the block lifting task is 
simulated using [6].  The animation shows the manipulator 
lifting a block of 2kg for a 10 seconds program. Fig 1 illustrates 
the Cartesian path developed. It can be easily seen that there are 
no abrupt position changes in the path, so no velocity and 
acceleration peaks should occur.  
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Figure 1: The developed path to lift the block upward 
 
The following figures show some poses for the manipulator 
along the path designed.  
 

 
Figure 2: Initial pose of the manipulator 
 
 
 

 

 
Figure 3: Intermediate pose of the manipulator 
 
 

 
Figure 4: Final pose of the manipulator 
 
Trajectory Twist 

 

The resulting path joint angles  θ  along with its time derivative  

θ&  and θ&&  are illustrated respectively in Fig.5, Fig.6 and Fig. 7. 
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Figure 5: Joint angles trajectories. 
 

 
Figure 6: Joint angles velocities 

 
Figure 7: Joint angles acceleration 
 
 

Trajectory of the end effector origin F7 

 

Fig. 8-11 show position, velocity and acceleration of the end 
effector origin.  It is to note that the values are given in the 
referential of the block and not in the robot base. This means 
xblock is pointing in the negative z axis while zblock corresponds to 
the y axis and yblock is pointing in the positive direction of the x 
axis. The entire axes are in reference to the robot base. 

 
Figure 8: End effector origin position 
 
It is evident in Fig. 8 that the end effector origin moves from 
x=-0.38 two meters up to x= -0.58 (which corresponds to a 
movement from z=0.38 to z=0.58 in the robot base system). 
 

 
 

Figure 9: End effector origin velocity  
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Figure 10: End effector acceleration 
 
It is important to note in Fig. 10 that the force of gravity 
appears in positive x-direction in the block coordinate system 
 
To provide an overview of the path we include here as well a 
3D view in Fig. 11. 
 
 

 
Figure 11: 3D path 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Motor torques (Articular couples) 

 
Finally the required motor torques calculated are presented in 
Fig. 12 

 
Figure 12: Required motor torques (articular couples) 
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DISCUSSION  
 
  The dynamics computations in lifting a block with a 
manipulator presented many challenges.  Some challenges faced 
during the development process and the results are discussed. 
 

The calculation of the trajectory joint angles for the 
movement along the z-axis was supposed to be simple, as we 
would just reuse the already proven reach-function of the 
previous project [3]. However some problems occured as the 
reach-function would always overshoot and never converge. 
Hence modifications were necessary in the code parameters. 
The adjustments were made in particular to decrease the damp 
factor and increase the number of maximal iterations for each 
point. Afterwards all points converged with the reach function. 
 
  To calculate the first and second order derivatives of 
the joint angles we simply took the differences divided by time. 
This resulted in some peaks in the derivations due to the very 
small numbers we were working with. Thus we applied a filter 
to these derivations, smoothing the calculated results. In the real 
system, this “low pass filter” would be introduced anyway by 
the inertias of the system. Acceleration peaks due to mechanical 
shocks was successfully avoided with the careful step function 
chosen for path increments. 
 

 
 
 
The most exercised motors were found in the motors in 

joint 2 and 3.  This was expected from the simulation of the 
path sampled in Fig. 2-4.  The joint 1, 4 and 6 have torques 
close to zero, as due to the geometrical location of these joints 
they are only facing a torques due to inertia when moving,  It is 
apparent however that the motor 5 always has a torque load 
around 2 Nm.  This is verified by a simple calculation of a 
torque exercised by the block mass at distance in addition to the 
member mass multiplied by the distance to the center of gravity: 

Nmamm block 22.081.981.9 666 =⋅⋅+⋅⋅ ρ  

(we neglect in this calculation that joint 6 also rotates, thus 
giving smaller actual values for torque five) This proves that the 
torque value at joint 5 is acceptable. 
 
 

CONCLUSION 
 

In addition to the project one [3] and two [2] already 
discussed algorithms to calculate joint angles for a desired path, 
the new algorithms presented here showed how to successfully 
calculate the required motor torques for a specific task.  
 

 
 
With the required motor torques obtained, it could be 

verified to the motor spec sheets if such a movement is possible 
with the motors mounted on the manipulator. Or the other way 
around, knowing the desired task, adequate motors can be 
chosen.   

Finally, this preparation avoids problems with robots 
not being able to fulfill their task and is thus very important in 
the modelling of a robot. 
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ANNEX A 

MATLAB CODE 
 
       Tp3.m 
%TP3 MAIN FILE 
% 
%Author: Marie-Ange Janvier and Stefan Bracher 
%Date:   April 13

th
, 2006 

% 
  
  
%---------------simulation parameters------------------ 
dt=0.04;       %robot steptime 
t_travel=10;    % Travel time 
s_travel=0.2;    % distance to travel 
%-----------------------------------------------------% 
  
  
%-----------------desired path and orientation------------------------% 
disp(‘Setting desired Cartesian path and orientation ‘); 
points=t_travel/dt+1;    %number of intermediate steps 
ts=[0:dt:t_travel];      %Discretisized time 
s=(ts/t_travel)-sin(2*pi*ts/t_travel)/(2*pi); %Discretisized space 
  
pf_z=0.38+0.2*s;            %z coordinates of all points 
pf_x=-0.2*ones(1, points);  %x coordinates of all points 
pf_y=0.6*ones(1, points);  %y coordinates of all points 
  
PF=[pf_x; pf_y; pf_z];      %Batch of all points 
  
  
QF=[0 -1 0; 0 0 1; -1 0 0]; %Orientation constant fot all point 
  
  
%---------------------------------------------------------------------% 
  
  
% Creating void matrices to fill data in  
trj=[];   
  
%---------------Inverse kinematics fot starting point--------------------% 
  
t=[1.951302704 -0.901889446 -2.209582814 -2.760929807 1.598761828 -3.130403303]; 
  
% %---------------------- Calculating the articular trajectory-------------------- 
  
  
disp(‘Calculating joint path’); 
  
% joint path displacement 
thetas=articulaire(t, dt, PF, QF, points); 
  
thetadots=[zeros(1,6);diff(thetas)]*(1/dt); 
a = 1; 
b = [1/5 1/5 1/5 1/5]; 
%Using a low pass filter to reduce peaks due the calculation with very 
ythetadots = filter(b,a,thetadots);           %small numbers over 5 
thetadotdots=[zeros(1,6);diff(thetadots)]*(1/dt); 
%Using a low pass filter to reduce peaks due the calculation with very 
ythetadotdots=filter(b,a,thetadotdots); 
  
x=linspace(1,t_travel, points); 
 figure 
 plot(x’, thetas(:,1)); hold on; 
 plot(x’, thetas(:,2),’k—‘); 
 plot(x’, thetas(:,3),’:’); 
 plot(x’, thetas(:,4),’-.’); 
 plot(x’, thetas(:,5),’r—‘); 
 plot(x’, thetas(:,6),’g:’); hold off; 
 legend(‚Teta 1’,’Teta 2’,’Teta 3’,’Teta 4’, ‚Teta5’, ‚Teta6’ ); 
 Title(‘Trajectory in joint angles’); xlabel(‘Time (sec) ‘);  ylabel(‘Angles (rads) ‘); 
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 figure 
 plot(x’, ythetadots(:,1)); hold on; 
 plot(x’, ythetadots(:,2),’k—‘); 
 plot(x’, ythetadots(:,3),’:’); 
 plot(x’, ythetadots(:,4),’-.’); 
 plot(x’, ythetadots(:,5),’r—‘); 
 plot(x’, ythetadots(:,6),’g:’); hold off; 
 legend(‚Teta 1’,’Teta 2’,’Teta 3’,’Teta 4’, ‚Teta5’, ‚Teta6’ ); 
 Title(‘ Trajectory in  joint  velocities’);xlabel(‘Time(sec) ‘);  ylabel(‘Angular velocity (rads/s) ‘); 
   
 figure 
 plot(x’, ythetadotdots(:,1)); hold on; 
 plot(x’, ythetadotdots(:,2),’k—‘); 
 plot(x’, ythetadotdots(:,3),’:’); 
 plot(x’, ythetadotdots(:,4),’-.’); 
 plot(x’, ythetadotdots(:,5),’r—‘); 
 plot(x’, ythetadotdots(:,6),’g:’); hold off; 
 legend(‚Teta 1’,’Teta 2’,’Teta 3’,’Teta 4’, ‚Teta5’, ‚Teta6’ ); 
 Title(‘Trajectory in joint accelerations’);xlabel(‘Time (sec)’);  ylabel(‘Angular �imulator�on (rads/s^2) ‘); 
  
  
  
%-------------------Calculating the articular couples------------- 
disp(‘Calculating the articuar couples now’); 
for i=1:points 
  
[w, wdot, c, cdot, cdotdot]=outward_recursion2(thetas(i, :), thetadots(i, :), thetadotdots(i, :)); 
  
tau=inward_recursion2(cdotdot,thetas(i, :) w, wdot); 
  
%------STORING THE DATA SO IT CAN BE SEEN IN WORKSPACE------------% 
tau_NE(i, :)=tau; 
  
w1in2(i, :) =w(1:3, 1)’; 
w2in3(i, :) =w(1:3, 2)’; 
w3in4(i, :) =w(1:3, 3)’; 
w4in5(i, :) =w(1:3, 4)’; 
w5in6(i, :) =w(1:3, 5)’; 
w6in7(i, :)=w(1:3, 6)’; 
w7in8(i, :)=w(1:3, 7)’; 
  
wdot1in2(i, :)=wdot(1:3, 1)’; 
wdot2in3(i, :)=wdot(1:3, 2)’; 
wdot3in4(i, :)=wdot(1:3, 3)’; 
wdot4in5(i, :)=wdot(1:3, 4)’; 
wdot5in6(i, :)=wdot(1:3, 5)’; 
wdot6in7(i, :)=wdot(1:3, 6)’; 
wdot7in8(i, :)=wdot(1:3, 7)’; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%VERIFICATION: wdots start at zero and end at zero% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
c1in2(i, :)=c(1:3, 1)’; 
c2in3(i, :)=c(1:3, 2)’; 
c3in4(i, :)=c(1:3, 3)’; 
c4in5(i, :)=c(1:3, 4)’; 
c5in6(i, :)=c(1:3, 5)’; 
c6in7(i, :)=c(1:3, 6)’; 
c7in8(i, :)=c(1:3, 7)’;  
%NOTE: c7in8 describse the origin 7 in ORIENTATION 8 (AND NOT COORDINATE 
%SYSTEM 8) 
%A look at the �imulator tells us that x8=-z0, y8=-x0 and z8=y0  
%(This could also be optaine with changing the orientation using Q1Q2..ect) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%VERIFICATION:  c7 travels 0.2m in —x8 direction, what is equal 
%               to moving 200mm up ->OK 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
cdot1in2(i, :)=cdot(1:3, 1)’; 
cdot2in3(i, :)=cdot(1:3, 2)’; 
cdot3in4(i, :)=cdot(1:3, 3)’; 
cdot4in5(i, :)=cdot(1:3, 4)’; 
cdot5in6(i, :)=cdot(1:3, 5)’; 
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cdot6in7(i, :)=cdot(1:3, 6)’; 
cdot7in8(i, :)=cdot(1:3, 7)’; 
  
cdotdot1in2(i, :)=cdotdot(1:3, 1)’; 
cdotdot2in3(i, :)=cdotdot(1:3, 2)’; 
cdotdot3in4(i, :)=cdotdot(1:3, 3)’; 
cdotdot4in5(i, :)=cdotdot(1:3, 4)’; 
cdotdot5in6(i, :)=cdotdot(1:3, 5)’; 
cdotdot6in7(i, :)=cdotdot(1:3, 6)’; 
cdotdot7in8(i, :)=cdotdot(1:3, 7)’; 
%---------------END OF DATA STORING------------% 
  
end 
  
figure 
 plot(x’, tau_NE( :,1)); hold on; 
 plot(x’, tau_NE( :,2),’k—‘); 
 plot(x’, tau_NE( :,3),’ :’); 
 plot(x’, tau_NE( :,4),’-.’); 
 plot(x’, tau_NE( :,5),’r—‘); 
 plot(x’, tau_NE(:,6),’g:’); hold off; 
 legend(‘Tau 1’,’Tau 2’,’Tau 3’,’Tau 4’, ‘Tau 5’, ‘ Tau6’ ); 
 Title(‘Articular Couples’);xlabel(‘Time(sec) ‘);  ylabel(‘Torque(Nm) ‘); 
  
  
 c7=c7in8; 
 c7dots=cdot7in8; 
 c7dotdots=cdotdot7in8; 
  
 x=linspace(1,t_travel, points); 
 figure 
 plot(x’,c7(:,1)); hold on; 
 plot(x’,c7(:,2),’k—‘); 
 plot(x’, c7(:,3),’:’); 
 hold off; 
 legend(‘cx’,’cy’,’cz’ );xlabel(‘Time(sec)’);  ylabel(‘Position (m) ‘); 
 Title(‘Origin position vectors’);  
  
 figure 
 plot3(c7(:,1),c7(:,2),c7(:,3)); 
AXIS([-0.6 -0.2 0.2 0.6 0.2 0.6]) 
  
 Title(‘Block Path in robot space ‘);  
  
  
 figure 
 plot(x’, c7dots(:,1)); hold on; 
 plot(x’, c7dots(:,2),’k—‘); 
 plot(x’, c7dots(:,3),’:’); 
 ; hold off; 
 legend(‘cx’,’cy’,’cz’);xlabel(‘Time(sec)’);  ylabel(‘Velocity (m/s) ‘); 
Title(‘Origin velocity vectors’); 
  
 figure 
 plot(x’, c7dotdots(:,1)); hold on; 
 plot(x’,c7dotdots(:,2),’k—‘); 
 plot(x’, c7dotdots(:,3),’:’); 
  hold off; 
 legend(‘cx’,’cy’,’cz’);xlabel(‘Time(sec)’);  ylabel(‘Acceleration (m/s^2) ‘); 
 Title(‘Origin acceleration vectors’); 
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Outward_recursion2.m 

 
function  [w, wdot, c, cdot, cdotdot]=outward_recursion2(t, tdot, tdotdot) 
% c, cdot, cdotdot, wdot,  
%------------------obtaining system information------------------- 
[a, b, alpha, alpha_min, alpha_max,rho]=david_hartenberg;   %Loading the D-H description 
T_tool=tool;                                            %Loading the tool transformation matrix 
  
T1=transformation_matrix(alpha(1), t(1), a(1), b(1));   %Transformation matrix of the first member 
T2=transformation_matrix(alpha(2), t(2), a(2), b(2));   %Transformation matrix of the 2nd member 
T3=transformation_matrix(alpha(3), t(3), a(3), b(3));   %Transformation matrix of the 3d member 
T4=transformation_matrix(alpha(4), t(4), a(4), b(4));   %Transformation matrix of the 4th member 
T5=transformation_matrix(alpha(5), t(5), a(5), b(5));   %Transformation matrix of the 5th member 
T6=transformation_matrix(alpha(6), t(6), a(6), b(6));   %Transformation matrix of the 6th member 
  
Q1=T1(1:3, 1:3); %Extracting the orientation part 
Q2=T2(1:3, 1:3); %Extracting the orientation part 
Q3=T3(1:3, 1:3); %Extracting the orientation part 
Q4=T4(1:3, 1:3); %Extracting the orientation part 
Q5=T5(1:3, 1:3); %Extracting the orientation part 
Q6=T6(1:3, 1:3); %Extracting the orientation part 
Q7=[1 0 0; 0 1 0; 0 0 1];       % Fake Q7 for the block as a "robot member 
  
e=[0 0 1]';     %Vector along z-axis which is ALWAYS used as the rotational Axis 
                %So it can be used to build a vektor out of the thetas 
  
  
  
%---------The omegas----------------------------% 
%%%%%%%EACH OMEGA IS WRITTEN IN THE NEXT COORDONATE SYSTEM%%%%%%%%%%%%%%%%%%%  
%General formula for revolute joints: omega=omegaprevious + theta*[0 0 1]' 
w(:, 1)=Q1'*(tdot(1)*e);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Here we can do a little test: Q1*w(:, 1) should be equal to Theta1*e   % 
% disp('test w1:')                                                      %  
% Q1*w(:, 1)                                                            % 
% t(1)                               %OK                                % 
%(Note to ourselves: don't forget to put that in the report!!)          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
w(:, 2)=Q2'*(w(1:3,1)+tdot(2)*e); 
w(:, 3)=Q3'*(w(1:3,2)+tdot(3)*e);   
w(:, 4)=Q4'*(w(1:3,3)+tdot(4)*e);   
w(:, 5)=Q5'*(w(1:3,4)+tdot(5)*e); 
w(:, 6)=Q6'*(w(1:3,5)+tdot(6)*e);   
w(:, 7)=Q7'*w(1:3,6);  
  
%Test if ok 
% endeffector=Q1*Q2*Q3*Q4*Q5*Q6*w(:, 6) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  
  
%---------The omega dots----------------------------% 
%%%%%%%EACH OMEGA IS WRITTEN IN THE NEXT COORDONATE SYSTEM%%%%%%%%%%%%%%%%%%%  
%General formula for revolute joints: omegadot=omegadotprevious + omegaprev_x_thetadot+ thetadotdot 
wdot(:, 1)=Q1'*(tdotdot(1)*e); 
wdot(:, 2)=Q2'*(wdot(1:3,1)+cross(w(:, 1), tdot(2)*e)+tdotdot(2)*e); 
wdot(:, 3)=Q3'*(wdot(1:3,2)+cross(w(:, 2), tdot(3)*e)+tdotdot(3)*e); 
wdot(:, 4)=Q4'*(wdot(1:3,3)+cross(w(:, 3), tdot(4)*e)+tdotdot(4)*e); 
wdot(:, 5)=Q5'*(wdot(1:3,4)+cross(w(:, 4), tdot(5)*e)+tdotdot(5)*e); 
wdot(:, 6)=Q6'*(wdot(1:3,5)+cross(w(:, 5), tdot(6)*e)+tdotdot(6)*e); 
wdot(:, 7)=Q7'*wdot(1:3,6); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  
%---------The deltas- A helping variable---------------------------% 
delta(:,1)=Q1'*(T1(1:3,4))-rho(:,1);    
delta(:,2)=Q2'*(T2(1:3,4))-rho(:,2);  
delta(:,3)=Q3'*(T3(1:3,4))-rho(:,3);  
delta(:,4)=Q4'*(T4(1:3,4))-rho(:,4);  
delta(:,5)=Q5'*(T5(1:3,4))-rho(:,5);  
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delta(:,6)=Q6'*(T6(1:3,4))-rho(:,6);    %normal robot members 
delta(:,7)=0;                     %the artificial additional member "block" 
     
%---------The c's---------------------------%  
%What the thing is doing: 
%It calculates the position of ci in the ORIENTATION i+1 
%(THIS IS NOT THE SYSTEM i+1, JUST IT'S ORIENTATION 
%BUT IT DOES NOT MATTER AS WE JUST NEED THE DERIVATION OF C) 
% 
%(ACUTALLY THE COMPUTATION OF C IS ABSOLUTELY USELESS, WE JUST DO IT BECAUSE 
%F7(c) IS ASKED IN THE ASSIGNEMENT) 
% 
%It starts at the coordinate origin of i-1 exressed in i  
%(equals "c(:,i-1)+delta(:,i-1)", see picture Classbook Page 315) 
%Adds rho to get to the center of gravity of i 
%And finaly changes the orientation from i to i+1  
%(Premultiplication with Qi') 
%   
  
%THE BOOKS ORIGINAL VERSION%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
c(:, 1)=rho(:,1);  
c(:, 2)=Q2'*(c(:, 1)+delta(:,1))+ rho(:,2); 
c(:, 3)=Q3'*(c(:, 2)+delta(:,2))+ rho(:,3); 
c(:, 4)=Q4'*(c(:, 3)+delta(:,3))+ rho(:,4); 
c(:, 5)=Q5'*(c(:, 4)+delta(:,4))+ rho(:,5); 
c(:, 6)=Q6'*(c(:, 5)+delta(:,5))+ rho(:,6); 
c(:, 7)=Q7'*(c(:, 6)+delta(:,6));           % Tge block 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%---------u, v, cdot and cdotdot with Qi'*rho(i)---------------------------% 
cdot_zero=[0 0 0]'; 
cdotdot_zero=[0 0 -9.81]';   %So we introduce g-force, SIGN might be inverted, Q1 might needed 
u_zero=0; 
w(:, 1); 
v(:, 1)=cross(w(:, 1), rho(:,1));  %PROBABLY Q1'rho... needed as before to put vi in i+1 
cdot(:, 1)=v(:,1); 
cdotdot(:, 1)=Q1'*(cdotdot_zero)+cross(wdot(:,1), rho(:, 1))+cross(w(:,1), v(:, 1)); %PROBABLY Q1'rho... 
  
%for membrure 2 
u(:, 1)=cross(w(:, 1), delta(:, 1)); 
v(:, 2)=cross(w(:, 2), rho(:,2));  %PROBABLY Q2'rho... needed as before to put vi in i+1 
cdot(:, 2)=Q2'*(cdot(:, 1)+u(:, 1))+v(:, 2); 
cdotdot(:, 2)=Q2'*(cdotdot(:, 1)+cross(wdot(:,1), delta(:, 1))+cross(w(:,1), u(:, 1)))+cross(wdot(:,2), rho(:, 
2))+cross(w(:,2), v(:, 2)); 
%PROBABLY Q2'rho2 needed.. 
  
%for membrure 3 
u(:, 2)=cross(w(:, 2), delta(:, 2)); 
v(:, 3)=cross(w(:, 3), rho(:,3));  %PROBABLY Q3'rho... needed as before to put vi in i+1 
cdot(:, 3)=Q3'*(cdot(:, 2)+u(:, 2))+v(:, 3); 
cdotdot(:, 3)=Q3'*(cdotdot(:, 2)+cross(wdot(:,2), delta(:, 2))+cross(w(:,2), u(:, 2)))+cross(wdot(:,3), rho(:, 
3))+cross(w(:,3), v(:, 3)); 
%PROBABLY Q3'rho3 needed.. 
  
%for membrure 4 
u(:, 3)=cross(w(:, 3), delta(:, 3)); 
v(:, 4)=cross(w(:, 4), rho(:,4));  %PROBABLY Q4'rho... needed as before to put vi in i+1 
cdot(:, 4)=Q4'*(cdot(:, 3)+u(:, 3))+v(:, 4); 
cdotdot(:, 4)=Q4'*(cdotdot(:, 3)+cross(wdot(:,3), delta(:, 3))+cross(w(:,3), u(:, 3)))+cross(wdot(:,4), rho(:, 
4))+cross(w(:,4), v(:, 4)); 
%PROBABLY Q4'rho4 needed.. 
  
%for membrure 5 
u(:, 4)=cross(w(:, 4), delta(:, 4)); 
v(:, 5)=cross(w(:, 5), rho(:,5));  %PROBABLY Q5'rho... needed as before to put vi in i+1 
cdot(:, 5)=Q5'*(cdot(:, 4)+u(:, 4))+v(:, 5); 
cdotdot(:, 5)=Q5'*(cdotdot(:, 4)+cross(wdot(:,4), delta(:, 4))+cross(w(:,4), u(:, 4)))+cross(wdot(:,5), rho(:, 
5))+cross(w(:,5), v(:, 5)); 
%PROBABLY Q5'rho5 needed.. 
  
%for membrure 6 
u(:, 5)=cross(w(:, 5), delta(:, 5)); 
v(:, 6)=cross(w(:, 6), rho(:,6));  %PROBABLY Q6'rho... needed as before to put vi in i+1 
cdot(:, 6)=Q6'*(cdot(:, 5)+u(:, 5))+v(:, 6); 
cdotdot(:, 6)=Q6'*(cdotdot(:, 5)+cross(wdot(:,5), delta(:, 5))+cross(w(:,5), u(:, 5)))+cross(wdot(:,6), rho(:, 
6))+cross(w(:,6), v(:, 6)); 
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%PROBABLY Q6'rho6 needed.. 
  
%for fake membrure 7, the block 
u(:, 6)=cross(w(:, 6), delta(:, 6)); 
v(:, 7)=[0 0 0]';   
cdot(:, 7)=Q7'*(cdot(:, 6)+u(:, 6))+v(:, 7); 
cdotdot(:, 7)=Q7'*(cdotdot(:, 6)+cross(wdot(:,6), delta(:, 6))+cross(w(:,6), u(:, 6)))++cross(w(:,7), v(:, 7)); 
% 
  
  
  
  
end 
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inward_recursion 

 
function tau=inward_recursion(cdotdot,t, w, wdot) 
%%%%%%%%%%FIRST ACUIRING SOME GENERAL SYSTEM INFORMATION%% 
  
%total number of links 
n=7;  %6 for the robot, 1 to include the block as a "robot member" 
  
% Dynamic parameters 
m=[39 27 25 15 2.5 0.5 2]; %g=-9.81; 
  
%David hartenmerg 
[a, b, alpha, alpha_min, alpha_max, rho]=david_hartenberg; 
  
T1=transformation_matrix(alpha(1), t(1), a(1), b(1));   %Transformation matrix of the first member 
T2=transformation_matrix(alpha(2), t(2), a(2), b(2));   %Transformation matrix of the 2nd member 
T3=transformation_matrix(alpha(3), t(3), a(3), b(3));   %Transformation matrix of the 3d member 
T4=transformation_matrix(alpha(4), t(4), a(4), b(4));   %Transformation matrix of the 4th member 
T5=transformation_matrix(alpha(5), t(5), a(5), b(5));   %Transformation matrix of the 5th member 
T6=transformation_matrix(alpha(6), t(6), a(6), b(6));   %Transformation matrix of the 6th member 
  
Q1=T1(1:3, 1:3); %Extracting the orientation part 
Q2=T2(1:3, 1:3); %Extracting the orientation part 
Q3=T3(1:3, 1:3); %Extracting the orientation part 
Q4=T4(1:3, 1:3); %Extracting the orientation part 
Q5=T5(1:3, 1:3); %Extracting the orientation part 
Q6=T6(1:3, 1:3); %Extracting the orientation part 
Q7=[1 0 0; 0 1 0; 0 0 1];       % Fake Q7 for the block as a "robot member 
  
I1=inertia(1); 
I2=inertia(2); 
I3=inertia(3); 
I4=inertia(4); 
I5=inertia(5); 
I6=inertia(6); 
I7=inertia(7); 
  
%%%%%%%%%%%%%%%%%SOME THEORY%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%IMPULSSATZ:  m*cdotdot=SUM of all outher forces    %%% 
%%%             -> m*cdotdot=Fi-Fi+1                  %%% 
%%%             ->Fi=m*cdotdot+Fi+1                   %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%-------Using Impulssatz we can calculate all forces aplied to each joint-- 
f7=m(7)*Q7*cdotdot(1:3, 7);  %As cdotdot is in i+1, pre-multiplication with Qi brings it in i, f is in i 
f6=m(6)*Q6*cdotdot(1:3, 6)+Q6*f7;  %f6 will be in i=6 
f5=m(5)*Q5*cdotdot(1:3, 5)+Q5*f6; 
f4=m(4)*Q4*cdotdot(1:3, 4)+Q4*f5; 
f3=m(3)*Q3*cdotdot(1:3, 3)+Q3*f4; 
f2=m(2)*Q2*cdotdot(1:3, 2)+Q2*f3; 
f1=m(1)*Q1*cdotdot(1:3, 1)+Q1*f2; 
%All forces are in their own coordonate orientations 
  
%A little test at this place:  
%As robot stopped at the end, force f1 should be equal to the sum 
%of all masses multiplied with g 
%in negative z in the global system ->ok 
  
%%%%%%%%%%%%%%%%%SOME THEORY AGAOM%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%DRALLSATZ:  Ldot=sum(moments)+sum(moments incuced by forces)  %%% 
%%%            L=Impulsmoment+Spin=                              %%% 
%%%            Impulsmoment=m*rii x cdot                         %%% 
%%%            Spin=I*w                     ->h                  %%% 
%%%            m.by forces=ai x(-f(i+1))                         %%% 
%%%            moments=s(i)-s(i+1)                               %%% 
%%%                                                              %%% 
%%% thus:   (m*rii x cdot)dot+hdot=ai x(-f(i+1))+s(i)-s(i+1)     %%% 
%%% ->      s(i)=hdot+(m*rii x cdot)dot+ai x f(i+1)+s(i+1)       %%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%--------using impulssath to calculate the moments s(i) in joint i----- 
hdot7=I7*wdot(1:3,7)+cross(w(1:3, 7), I7*w(1:3, 7));    %As suggested by the book 
hdot6=I6*wdot(1:3,6)+cross(w(1:3, 6), I6*w(1:3, 6));     
hdot5=I5*wdot(1:3,5)+cross(w(1:3, 5), I5*w(1:3, 5));     
hdot4=I4*wdot(1:3,4)+cross(w(1:3, 4), I4*w(1:3, 4));     
hdot3=I3*wdot(1:3,3)+cross(w(1:3, 3), I3*w(1:3, 3));     
hdot2=I2*wdot(1:3,2)+cross(w(1:3, 2), I2*w(1:3, 2));     
hdot1=I1*wdot(1:3,1)+cross(w(1:3, 1), I1*w(1:3, 1));     
%hdot in system i+1 
  
s7=[0 0 0]';        % should be zero as spin of a point always is 
s6=Q6*(hdot6+cross(m(6)*rho(:, 6), cdotdot(1:3, 6))+cross(Q6'*T6(1:3, 4), f7)+s7);  %in sys 6 
%A little test:  
%test=Q6'*s6 %=0.21 should give the 3d torque in the end-effector coordonate system 
% should give around 0.22 (m6*rho6*g+mblock*g*f) around y axis OK 
  
s5=Q5*(hdot5+cross(m(5)*rho(:, 5), cdotdot(1:3, 5))+cross(Q5'*T5(1:3, 4), f6)+s6); % in sys 5 
%test 2 
%test2=Q5'*Q6'*s5 %gives x 0.41, y -2.16, z -0.08 
%should give around -2kg*g*0.1m (=1.962) - 0.5kg*9.81*0.05m (=0.24) = -2.2 
%around y OK (difference due to not perfect perpendicularity of g and z) 
  
s4=Q4*(hdot4+cross(m(4)*rho(:, 4), cdotdot(1:3, 4))+cross(Q4'*T4(1:3, 4), f5)+s5); % in sys 4 
  
s3=Q3*(hdot3+cross(m(3)*rho(:, 3), cdotdot(1:3, 3))+cross(Q3'*T3(1:3, 4), f4)+s4); % in sys 3 
s2=Q2*(hdot2+cross(m(2)*rho(:, 2), cdotdot(1:3, 2))+cross(Q2'*T2(1:3, 4), f3)+s3); % in sys 2 
s1=Q1*(hdot1+cross(m(1)*rho(:, 1), cdotdot(1:3, 1))+cross(Q1'*T1(1:3, 4), f2)+s2); % in sys 1 
  
  
  
tau=[s1(3), s2(3), s3(3), s4(3), s5(3), s6(3)];  %Tau is always the value for z as z is always along the 
rotation axis 
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david_hartenberg.m 

 
function  [a, b, alpha, alpha_min, alpha_max, rho]=david_hartenberg() 
  
%Defines the David-Hartenberg Parameters of the Robot 
  
a=[0.15,  
   0.770,  
   0.10,  
   0,  
   0,  
   0]; 
  
b=[0.525,  
   0,  
   0,  
   0.740,  
   0,  
   0.10]; 
alpha=[-pi/2, 
        0, 
        pi/2, 
        -pi/2, 
        pi/2, 
        0]; 
alpha_min=[-2.9671, 
           -2.1817, 
           -4.0143, 
           -3.4907, 
           -2.4435, 
           -7.8540]; 
alpha_max=[2.9671, 
           2.1817, 
           4.0143, 
           3.4907, 
           2.4435, 
           7.8540]; 
        
rho=[ 0.07, 0.35, 0.05,     0, 0, 0 ;  
     -0.26,    0,    0, -0.35, 0, 0 ; 
         0,    0, 0.02,     0, 0, 0.05 ]; 
      
  
  
 

Transformation_matrix.m 
 

function  T=transformation_matrix(alpha, theta, a, b) 
%Calculates the tranformation matrix of a robot member 
%acording to the formula defined in the Report of TP1 Page 2 
  
T=[cos(theta) -cos(alpha)*sin(theta) sin(alpha)*sin(theta) a*cos(theta); 
   sin(theta) cos(alpha)*cos(theta) -sin(alpha)*cos(theta) a*sin(theta); 
   0 sin(alpha) cos(alpha) b; 
   0 0 0 1 
]; 
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Tool.m 
 

function  T_tool=tool() 
%Defines the tool tranformation matrix of the robot 
  
% beta=-25.2*pi/180; 
% T_tool=[cos(beta), 0, -sin(beta), -0.0785;... 
%             0, 1, 0, 0; ... 
%             sin(beta), 0, cos(beta), 0.154;... 
%             0, 0, 0, 1]; 
  
% T_tool=[1, 0, 0, 0.1;... 
%         0, 1, 0, 0; ... 
%         0, 0, 1, 0;... 
%         0, 0, 0, 1]; 
  
T_tool=[1, 0, 0, 0;... 
        0, 1, 0, 0; ... 
        0, 0, 1, 0;... 
        0, 0, 0, 1]; 

 
Inertia.m 

 
function I=inertia(value) 
  
if (value == 1) 
I=[3.1 0 0 
    0 3.0 0  
    0 0 3]; 
end 
if (value == 2) 
I=[0.3 0 0 
    0 2.9 0  
    0 0 3]; 
end 
if (value == 3) 
I=[1.1 0 0 
    0 1.1 0  
    0 0 1.1]; 
end 
if (value == 4) 
I=[3.0 0 0 
    0 0.3 0 
    0 0 3]; 
end 
if (value == 5) 
I=[0.8 0 0 
    0 0.8 0  
    0 0 0.1]; 
end 
if (value==6) 
I=[0.2 0 0 
    0 0.2 0  
    0 0 0.1]; 
end 
if (value==7) 
I=[0 0 0 
   0 0 0  
   0 0 0]; 
end 
end 
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reach.m 

 
function [t, label]=reach(pf,Qf, t) 
% inputs to evaluate new postion of tool for the manipulator 
% ep=erreur positoin, ee=erreur d'orientation n= nombre d`iterations  
% a=amortisseur 
  
n=500; a= 0.1; ep=1; ee=10; 
  
  
[p,Q,J]=mgd(t); %actual position, orientation and Jacobienne 
ep=norm(pf-p); 
ee=asin(norm(Q*vect(Q'*Qf))); 
e=Q(1:3, 3); 
P=eye(3)-e*e'; L =e*e'; 
  
T=zeros(6,6); 
% 0 orientation, 1 positions 
 %T(1:3,1:3)=zeros(3); T(4:6,4:6)=L; 
  
% 0 orientation, 2 positions 
% T(1:3,1:3)=zeros(3); T(4:6,4:6)=P; 
  
% 0 orientation, 3 positions 
% T(1:3,1:3)=zeros(3); T(4:6,4:6)=eye(3); 
  
  
  
% 1 orientation, 1 positions 
 %T(1:3,1:3)=L; T(4:6,4:6)=L; 
  
% 1 orientation, 2 positions 
% T(1:3,1:3)=L; T(4:6,4:6)=P; 
  
% 1 orientation, 3 positions 
% T(1:3,1:3)=L; T(4:6,4:6)=eye(3); 
  
% 2 orientation, 1 positions 
 %T(1:3,1:3)=P; T(4:6,4:6)=L; 
  
%2 orientation, 2 positions 
%T(1:3,1:3)=P; T(4:6,4:6)=P; 
  
% 2 orientation, 3 positions 
% T(1:3,1:3)=P; T(4:6,4:6)=eye(3); 
  
% 3 orientation, 1 positions 
%T(1:3,1:3)=eye(3); T(4:6,4:6)=L; 
  
%3 orientation, 2 positions 
%T(1:3,1:3)=eye(3); T(4:6,4:6)=P; 
  
% 3 orientation, 3 positions 
T(1:3,1:3)=eye(3); T(4:6,4:6)=eye(3); 
  
  
[z, z, alpha, alpha_min, alpha_max,rho]=david_hartenberg; 
tmax=alpha_min'; 
tmin=alpha_max'; 
tmean=1/2*(tmax + tmin); 
W=diag(tmax-tmin); 
h=-W*(t-tmean)'; 
  
% while(n>0 & (ep>0.0001 | ee> 0.001)) 
    while(n>0 & (ep>0.00001 | ee> 0.0001)) 
  
    dp=a*(pf-p);     %dp 
   
    dq=a*Q*vect(Q'*Qf); 
    dx=[dq;dp]; 
    dt=(pinv(J)*T)*dx + pinv(J)*(eye(6)-T)*J*h; 
    % dt=pinv(J)*dx + (eye(6)-pinv(J)*J)*h; 
    t=t+dt'; 
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    %Correcting overshoots 
    for ti=1:6  
     while t(ti)>(2*pi) 
         t(ti)=t(ti)-(2*pi); 
     end     
     while t(ti)<(-2*pi) 
         t(ti)=t(ti)+(2*pi); 
     end    
    end 
     
    [p,Q,J]=mgd(t); %actual position 
    ep=norm(pf-p); 
    ee=asin(norm(Q*vect(Q'*Qf))); 
    n=n-1; 
    
end 
label=1; 
  
if n==0 
        disp('reach error'); 
        label=0; 
end 
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mgd.m 

 
function  [p,Q,J]=mgd(thetas) 
%Calculates the direkt kinematics of the Robot 
  
%-----------functions needed--------------------------------------- 
%david_hartenberg.m     The D-H-description of the robot 
%tool.m                 The tool tranformation matrix 
%transformation_matrix.m Buids tha transf.matrix of a robot member 
%----------------------------------------------------------------- 
  
  
  
[a, b, alpha, alpha_min, alpha_max,rho]=david_hartenberg;   %Loading the D-H description 
T_tool=tool;                                            %Loading the tool transformation matrix 
  
T1=transformation_matrix(alpha(1), thetas(1), a(1), b(1));   %Transformation matrix of the first member 
T2=transformation_matrix(alpha(2), thetas(2), a(2), b(2));   %Transformation matrix of the 2nd member 
T3=transformation_matrix(alpha(3), thetas(3), a(3), b(3));   %Transformation matrix of the 3d member 
T4=transformation_matrix(alpha(4), thetas(4), a(4), b(4));   %Transformation matrix of the 4th member 
T5=transformation_matrix(alpha(5), thetas(5), a(5), b(5));   %Transformation matrix of the 5th member 
T6=transformation_matrix(alpha(6), thetas(6), a(6), b(6));   %Transformation matrix of the 6th member 
  
Ttot=T1*T2*T3*T4*T5*T6*T_tool;                              %Calculating the overall transformation matrix 
  
p=Ttot(1:3,4);                                              %Extracting the end effector position 
Q=Ttot(1:3,1:3);                                            %Extracting the end effector orientation 
  
%UNTIL HERE EVERYTHING IS FINE AND WORKING!!!!!! 
  
% now we will get the Jacobian at this point 
  
%first the orientation matrices are build 
 Q11=T1(1:3,1:3);        Q12=Q11*T2(1:3,1:3); 
 Q13=Q12*T3(1:3,1:3);    Q14=Q13*T4(1:3,1:3); 
 Q15=Q14*T5(1:3,1:3);    Q16=Q15*T6(1:3,1:3); 
 %Q17=Q16*T_tool; 
%Q17 TO END EFFECTOR NEEDED? WE ARE HERE JUST AT THE END EFFECTOR BASE!!!!!  
  
%The unitary vectors relative to the base are calculated 
     
 k=[0, 0, 1]';  %Definition 
  
 e1=k;  
 e2=Q11*k; 
 e3=Q12*k;  
  
 e4=Q13*k;  
 e5=Q14*k;  
 e6=Q15*k; 
%  e7=Q16*k; 
     
 %ALSO HERE WE GO JUST TO THE END EFFECTOR BASE!!!!!  
     
  
 %The radii ri defined on the previous referential are obtained 
 %ALSO HERE WE GO JUST TO THE END EFFECTOR BASE!!!!!  
%     r7=T_tool(1:3,4); 
    r6=T6(1:3,4); 
    %r6=T6(1:3,4)+Q16(1:3,1:3)*r7; 
    r5=T5(1:3,4)+Q15(1:3,1:3)*r6; 
    r4=T4(1:3,4)+Q14(1:3,1:3)*r5; 
    r3=T3(1:3,4)+Q13(1:3,1:3)*r4; 
    r2=T2(1:3,4)+Q12(1:3,1:3)*r3; 
    r1=T1(1:3,4)+Q11(1:3,1:3)*r2; 
     
  %now they are transformed in the base referential: 
     
    r1=r1; 
    r2=Q11*r2; 
    r3=Q12*r3; 
    r4=Q13*r4; 
    r5=Q14*r5; 
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    r6=Q15*r6; 
%     r7=Q16*r7; 
     
  %now we can get the Jacobian with the equation op Report TP2 Page 2   
    J=zeros(6,6); 
    J(1:6,1)=[e1;cross(e1,r1)];          J(1:6,2)=[e2;cross(e2,r2)]; 
    J(1:6,3)=[e3;cross(e3,r3)];          J(1:6,4)=[e4;cross(e4,r4)]; 
    J(1:6,5)=[e5;cross(e5,r5)];          J(1:6,6)=[e6;cross(e6,r6)]; 
     

  

  

 
Enrigistre.trj 

 
function etat=enregistre_trj(trj, dT, filename) 
% Updated to fit T3 
  
%Expects a dT, a filename and a  nx6 matrix in the following format 
%[  teta1_1 teta1_2 ...toolcommand1 
%   teta2_1 teta2_2 ...toolcommand 
%   teta3_1 teta3_2 
%   teta4_1 teta4_2 
%   teta5_1 teta5_2 
%   teta6_1 teta6_2 ]  here with 6 tetas and 2 points 
  
  
etat=0; 
trj=trj'; 
[a, z]=size(trj);       % Dimensions of trj 
  
if a==7 
     
    fid=fopen(filename, 'w');  %trying to write the file 
    if fid==0 
            disp('Cant write the file:'); filename 
        else 
            fprintf(fid, '%10.0f ', z);      %Line numbers 
            fprintf(fid, '%10.5f \n', dT);   %dT 
            for i=1:z 
            fprintf(fid, '%5.9f %5.9f %5.9f %5.9f %5.9f %5.9f %5.9f\n', trj(:,i)); 
            % writing the lines with the angles 
            end 
            fclose(fid); 
            etat=1; 
     end 
 else 
     disp('the matrix does not have 6 angles plus a tool command!'); 
 end 
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articulaire.m 

 
function thetas=articulaire(t, dt, PF, QF, points) 
  
disp('Calculating the articular path now'); 
  
for i=1:length(PF) 
i 
[t, label]=reach(PF(:, i), QF, t);  %Calculates the joint angles 
  
% In case angles are multiples of pi we set it back 
 for ti=1:6      
     while t(ti)>(2*pi) 
         t(ti)=t(ti)-(2*pi); 
     end     
   while t(ti)<(-2*pi) 
         t(ti)=t(ti)+(2*pi); 
     end    
 end 
  
thetas(i,:)=t; 
  
label_all(i)=label;    %Writing the labels 
  
end  
trj=[thetas, ones(points, 1)]; % writing the new angles to trj 
       %Storing it 
  
%----------------------saving the path---------------------------------- 
enregistre_trj(trj, dt, 'trajectoire_art.trj');% Save the partial track 
%______________________________________________________________ 
  
  
  
end 

 
 
 
 
 
 

 
 
 


