### Bachelor Work Fingertip Position Sensor

### **Stefan Bracher**

Northwestern University/ ETH Zürich





- Content
  - Introduction
  - Mathematical model
  - Implementation
  - Testing
  - Conclusion/ Discussion



Fingertip position sensor

|       | •• |       |    |       |
|-------|----|-------|----|-------|
|       | •• | •• •• | •• | ••    |
|       | •• |       | •• |       |
|       | •• |       | •• | • •   |
| ••••• | •• |       | •• | •• •• |
| ••••• |    |       |    |       |
|       |    |       |    |       |
|       |    |       |    |       |

- Introduction
  - The tactile display
    - developed at Northwestern University by John Glasmire
    - surface friction can be changed



The tactile display

| •••   |    |        |    |
|-------|----|--------|----|
|       |    |        |    |
|       |    | <br>   |    |
|       |    |        |    |
|       | •• | <br>   | •• |
|       |    | <br>•• |    |
|       | •• | <br>•• | •• |
| ••••• | •• | <br>•• |    |
| ••••• |    | <br>   |    |
| ••••• |    |        |    |
|       |    |        |    |

- Introduction
  - Task description
    - Development of a fingertip position sensor for the tactile display, based on reaction forces
      - Mathematical model
      - Design and fabrication of the sensor
      - Real-time computer code under QNX
      - Interface to tactile display



- Mathematical Model
  - Constraints
    - Point A: y, z
    - Point B: x, y, z
    - Point C: z



Idealisation of the tactile display as a box





Mathemathical model
Solution

$$y = \frac{F_y * h - C_z * I}{F_z}, x = \frac{F_x * h - A_z * W}{F_z}$$

$$F_x = -B_x, F_y = -A_y - B_y, F_z = -A_y$$



Idealisation of the tactile display as a box





- Implementation
  - Simplifications
    - Force measurement in top plane
    - 4 supporting points
    - Forces in x and y direction neglected
  - Modified formula

$$y = \frac{-(C_z + D_z) * I}{F_z}, x = \frac{-(A_z + D_z) * W}{F_z}$$



Cross section and top view of the device

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



- Implementation
  - Working principle



#### **QNX** Platform



- Implementation
  - Dimensioning
    - "Cage" dimensions given by the tactile display (3\*2.25\*4 inch)
    - Cantilever dimensions (0.6\*0.4\*0.15 inch)
      - a finger touch (25g) gives 1.9V (after amplification with 2500)
      - maximal push (200g) gives 9.5V (after amplification with 2500)



- Implementation
  - Signal Conditioning and Amplification



Wheatstone half-bridge and Op-Amp



Complete circuitry

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

| ••••• |    |       |    |       |
|-------|----|-------|----|-------|
| ••••• | •• | •• •• | •• | •• •• |
|       | •• | •• •• | •• | ••    |
|       | •• |       | •• |       |
|       | •• |       | •• | • •   |
|       |    |       |    |       |
| ••••• |    |       |    |       |
|       |    |       |    |       |
|       |    |       |    |       |

- Implementation
  - Software
    - Real time QNX Platform
    - Additional functions included in program of tactile display
      - Moving average filter
      - Sensor Calibration
      - Fingertip Position Calculation
      - Coordinate system mapping
      - Data Recording



Tests



Coordinate system and route taken





Tests





Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



- Problems
  - Signal 20 times smaller than expected
  - Noise
  - Drift
  - $\rightarrow$  Inaccuracy of about 0.5 inch
  - → reduced sensitivity: Only a "Push" can be detected



Ideal vs. real cantilever shape



- Conclusion/ Discussion
  - It is possible to make a "Touchpanel" based on the reaction forces
  - Improvements can and have to be done
    - More signal
    - Avoid drifting
    - Noise reduction





- Conclusion/ Discussion
  - Proposed improvements
    - Thinner cantilever beams
    - Full Wheatstone Bridges (4 instead of 2 strain gages per cantilever)
    - Separating the heat producing part of the electronics (DC/DC Converter and Voltage controllers)

 $\rightarrow$ Details see report



Questions



http://bcn.boulder.co.us

ETTH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich