
Control of the Mascarillon robot: a 4-DOF, cube-
shaped flying robot

June 2007

Stefan Bracher

Abstract:

Three different types of controllers, fuzzy control, sliding mode control and pre-calculated couple control, have
been developed and implemented on a 4 degree of freedom flying robot called “Mascarillon”. Two of the three
modes are designed to be adaptive, in order to account for the non-linear and changing dynamics of the robot.
This paper presents the different controllers and shows a performance comparison, based on experimental
results.

Keywords: Non-linear Dynamics, fuzzy control, sliding mode control, pre-calculated couple, adaptive control

A. Introduction

1. The robot

The Mascarillon robot is a cube shaped helium blimp robot.
Equipped with fans in 8 of the 12 cube corners, it can move in
all directions and rotate around the vertical axis. Sonar sensors
and an electronic compass allow to compute the position and
orientation relative to the environment. The core of the robot is
a “Korebot” [1] Linux system, on which the positioning and
behavioral control algorithms are programmed.

2. Purpose of the robot

The Mascarillons have been produced for the SAILS [2]
project, in order to produce self assembling lighter than air
structures for architectural research. In simulation, the
necessary swarm-intelligence protocols are already tested, but
they are not applied yet to the real cubes.
Currently the cubes are used for public performances, where
they interact with an actor or the audience. Due to the cube
shape, the cubes can also be used as a flying projection
surface.

Figure 1: A Mascarillon Robot at the « Robofolies »
exhibition, Centre de Science de Montreal, March 2008

3. Main issues

The most complex task for the robot is just to keep its position. Because of his low mass and cubic shape, it is
moved by the slightest air currents. Sun radiation easily heats up the helium such as the blimp looses its
equilibrium. Further on, different helium contents and battery power change its dynamics constantly.

A first attempt with simple PID control was able to stabilize the system, but proved not to be practical as the
controller gains had to be experimentally fine-tuned for each presentation setup. As no adequate model, able to
accurately reproduce the real robots behavior could be found, it was decided to implement and test different
controller types directly on the real robot itself.

1/8

B. Control

Figure 2: Fan used for propulsion in one of the corners

1. The selected controller types

The pre-calculated couple, the adaptive sliding mode control and
the fuzzy control have been selected as they all offer a solution
to the non-exact model problem.
While fuzzy control is based on control laws that are similar to
the ones of a human operator and do not require a model at all,
pre-calculated couple and sliding-mode control separate the
actual control law from the model. The model is then optimized
on-line with appropriate adaptation algorithms. Details will follow
in section three.

2. Coordinate system and approximative dynamic model

The coordinate system is placed in the center of mass of the robot. The coordinates represent the distance to
the walls surrounding the robot. For each axis, it is decided in the control program, which side is taken into
consideration. Distance measurements taken on the back, left and down side of the robot are regarded as
positive coordinates, on the front, right and up side as negative coordinates.
The rotational angle around the z axis is measured with a compass, relative to the initial robot orientation. It is
positive, if the robot has been turned clockwise negative otherwise.

The four degrees of freedom of the robot are the lateral movements (displacement x ,y , z) and the rotation
around the z-axis (Angle z , just referred as ). The robot can theoretically also turn around the other two

axes (Angles x,y). The available motor power however is unable to turn the “center of mass”, which is
situated below the geometrical cube center, around these axes. Thus this movement is not actively controlled
and the angles x ,y are neglected.

The approximative dynamic model of the robot is:

F =[
F x

F y

F z

z
]=[

m⋅ẍk l a t⋅ẋ
2⋅s i gn ẋ 

m⋅ÿk l a t⋅ẏ
2⋅s i gn ẏ 

m⋅z̈k l a t⋅ż
2⋅s i gn ż 

I z⋅̈k r o t⋅̇
2⋅s i gn̇ 

]
Eq. B.2.1

with
Fx , Fy , Fz : Forces in x, y, and z direction applied by the fans

z : Torque around z axis applied by the fans

k lat , k rot : Aerodynamic resistance to lateral movement and rotation

Iz : Cube inertia around z axis

Equation B.2.1 can be written in short form as
F=Y⋅a

Eq. B.2.2

with Y=[
ẍ ẋ2⋅s i g n ẋ  0 0

ÿ ẏ2
⋅s i g n ẏ  0 0

z̈ ż 2
⋅s i g n ż  0 0

0 0 ̈ ̇
2
⋅s i g n ̇

] and a =[
m
k l a t

Iz
k r o t

]

Figure 3: The axes of the coordinate system
intersect in the center of mass of the Mascarillon.
Note that the center of mass is situated below the
geometrical center.

2/8

3. The controllers in detail

3.1. Fuzzy Control

Fuzzy Control follows a set of rules instead of
mathematical functions. The advantage is that no
model is needed and that an intuitive control scheme,
based on human experience, is resulting. The
disadvantage of this approach is the need for
experimental fine tuning of the controller parameters.

In order that these these “fuzzy” rules can be
executed by a controller, they have to be quantized.
This is done by selecting specific system states and
connecting those states to a certain action.

For each degree of freedom x , the following states,
based on the error (difference between desired and
actual position), are selected:
- Positive error : Z ep

- Negative error : Z en

- Integral of error positive : Z intep

- Integral of error negative : Z inten

- Absolute error increasing : Z ince

- Absolute error decreasing: Z dece

- Error slightly positive : Z esp

- Error slightly negative : Z esn

The system can belong to each of this states Z i with

a membership  i between 0 and 1. The membership
is calculated with the membership functions on the
right.

Figure 4: Top: Membership function used for states: “Positive error”,
“Integral of error positive” and “absolute error increasing””. Bottom:
Membership function used for states: “negative error”, “Integral of
error negative” and “absolute error decreasing”. With the error, the
integral of the error and the absolute of the first derivative of the error

as x-axis and experimental parameters cp
, cn

Figure 5: Top: Membership function for state “Error slightly positive”.
Bottom: Membership for state “Error. With the error as x-axis and

experimental parameters cp
, cn

Set of rules for each degree of freedom x :

State Action: Explanation

Z ep
Apply medium positive force  m

The actual position coordinate is smaller than the desired one.

Z en
Apply medium negative force −m

The actual position coordinate is bigger than the desired one.

Z ep
 and Z intep

Apply big positive force  p
For a while, the actual position coordinate is smaller than the desired one.

Z en
 and Z inten

Apply big negative force − p
For a while, the actual position coordinate is bigger than the desired one.

Z ep
 and Z ince

Apply big positive force  p
The robot goes away from the desired position in negative direction.

Z en
 and Z ince

 Apply big negative force − p
The robot goes away from the desired position in positive direction.

Z esp
 and Z dece

Apply small negative force − s
 to

prevent overshoot

The robot is approaching the desired location from the positive side

Z esn
 and Z dece

Apply small positive force s
 to

prevent overshoot

The robot is approaching the desired location from the negative side

The force to be applied for each degree of freedom x i , according to the above set of rules, is then calculated
with the following defuzzification law:
F i=i ,m⋅ i , e p− i , e ni , p⋅ i , e p⋅ i , i n t e p i , i n c e − i , e n⋅i ,i n t e n i , i n c ei , s⋅ i , e s n⋅ i , d e c e− i , e s p⋅ i ,d e c e 

Eq. B.3.1

3/8

3.2. Sliding-Mode Control

The sliding Sliding mode controller is divided in a kinetic controller and a dynamic conversion part. This makes
possible that the actual control law (the kinetic controller) is decoupled from the dynamic model. Its
implementation is based on [3].

Kinetic controller
The kinetic controller calculates the velocity ˙x k i n , needed to reduce the error between desired and actual
position:

˙xkin=⋅xdes−x 

with the matrix of controller gains 

Dynamic conversion
The dynamic conversion of ˙x k i n into the forces required to attain these velocities is done using the dynamic
model of the robot (Equation B.2.2):
F=Y⋅a

with Y=[
¨x k i n

˙x k i n
2
⋅s i g n  ˙x k i n 0 0

¨y k i n
˙y k i n

2
⋅s i g n  ˙y k i n 0 0

¨z k i n
˙z k i n

2⋅s i g n  ˙z k i n 0 0

0 0 ¨k i n
˙k i n

2⋅s i g n  ˙k i n
] and a =[

m
k l a t

Iz
k r o t

]
Parameter estimator
A parameter estimator is introduced to adapt the constants used in the model. The adaptation is done with:
a =∫⋅YT⋅ ˙x k i n−ẋ d t

with the weighting matrix =[
m 0 0 0
0 klat 0 0
0 0  Iz 0
0 0 0 krot

]
This makes it possible, within certain limits, to adjust for modeling errors and changing environmental conditions.
The resulting parameters however do not necessarily correspond to the real parameters. If the model contains
errors, they will be a best fit solution.

The main problem of the parameter estimator is that jumps in the commanded position may lead to a wrong
parameter estimation and that the behavior of the robot changes over time. To reduce the impact of this, the
parameters have be born to certain values.

4/8

3.3 Pre-calculated couple

The pre-calculeted couple controller is, like the sliding-mode controller, divided in two parts in order to decouple
the control law from the dynamic model. The difference is, that not the velocities ˙x k i n , but the accelerations

¨xkin , necessary to reduce the error are computed in the kinetic part. Alike the sliding mode controller, the
implementation of the pre-calculated couple controller is based on [3].

Kinetic controller
The kinetic controller is implemented with a traditional PID approach of the form:

¨x k i n=K p x d e s−x K d  ˙x d e s− ẋ K i∫ x d e s−x d t

with controller gain matrices K p=[
Kpx 0 0 0

0 Kpy 0 0

0 0 Kpz 0
0 0 0 Kp

] , K d=[
Kdx 0 0 0

0 Kdy 0 0

0 0 Kdz 0
0 0 0 Kd

] and

 K i=[
Kix 0 0 0

0 Kiy 0 0

0 0 Ki z 0
0 0 0 Ki

]
Dynamic conversion
To compute the dynamic conversion, a modified version of Eq. B.2.2 is used, taking in account only the
acceleration:

F=Y⋅a

with Y=[
¨x k i n 0

¨y k i n 0

¨z k i n 0
0 ¨k i n

] and a =[mI z
]

Parameter estimation
The parameter estimator used to adapt the constants of the dynamic conversion is this time of the form:
a =∫⋅YT⋅ x d e s−x d t

with the weighting matrix =[m 0
0 I]

Again the values of a are born to minimal and maximal settings.

5/8

C Experiments

1. Test setup

Figure 6: Robot in a room corner: Top view

To test and compare the different controllers, the cube is placed
in a corner of a room, with x and y axes parallel to the wall. (See
figure 6). As distances are measured on the front, left and down
side, in this setup, the x- and y-coordinates are negative while
the z-coordinate is positive. (Refer to section B, 2.)
The rotation angle  around the z-axis is set to zero with the
robot parallel to the walls as in figure 6.

A test sequence is then performed, which consists of the robot:
1. staying at a distance of 1m from each wall, at an altitude

of 0.85m and no rotation.
2. increasing the distance to the wall on the x-side to 1.57m
3. increasing the distance to the wall on the y-side to 1.57m
4. increasing the altitude to 1.42m
5. decreasing the distance to the wall on the x-side to 1m
6. decreasing the distance to the wall on the y-side to 1m
7. decreasing the altitude to 0.85m
8. rotating -0.380 rad
9. rotating back to initial orientation

This sequence is repeated several times for all three controllers.

2. Results Fuzzy Logic

6/8

Figure 7: Test results fuzzy logic. Green: Desired position, Blue: Actual position

3. Results Sliding mode control

4. Results Pre-calculated couple control

7/8

Figure 8: Test results sliding mode control. Green: Desired position, Blue: Actual position

Figure 9: Test results pre-calculated couple. Green: Desired position, Blue: Actual position

D. Conclusion

The most accurate set point following is provided by the fuzzy logic controller. The downside of the fuzzy logic is
that during the tests there occurred some “freak outs”. On the recording this can be seen at around 630 and
1700 seconds (see figure 7), where the blimp actually crashed into the walls (distance 0). This might be an
instability caused by the integral part of the fuzzy law and could probably be reduced by further optimizing the
control parameters. Luckily however, after the crash, the robot was able to re-stabilize itself without external
intervention.
The pre-calculated couple controller also succeeds to follow the set point, but not as accurately as the fuzzy
logic controller. Here also, a wall-crash occurred during the tests (at around 1130 seconds, see figure 9). No
crash at all had the sliding mode controller. This supports the theory that this instabilities are caused by the
integral part of the control law, as the sliding mode controller does not have any integration on the positioning
error itself. Obviously, having no integral part on the error causes an offset in set point following, what can be
seen in figure 8.

During the tests of about 30 minutes, changing battery power and environmental conditions did not seem to be
an issue for any of the controllers. Because of the missing adaptive part, it was expected that the fuzzy logic
would eventually fail at some point, but this did not happen. The contribution of the adaptive parts in sliding
mode and pre-calculated couple control can thus not be seized with these recordings. Further tests, turning the
adaptive parts on and off as well as voluntarily changing environmental conditions would have to be done.

Based on the results, the question which controller to use during performances has to be answered as follows: If
accurate set point following is needed and some occasional loss of control (wall crash) is allowed, the fuzzy
control implemented is the best fit. If loss of control is not acceptable at any point, the sliding mode controller has
to be used, at the cost of a positioning offset.

For future work the problem of occasional loss of control has to be targeted, in order to be able to use fuzzy logic
at any time. Further on, the controller will be extended on the angles around x- and y-axis in order to increase
overall stability.

References

[1] Website http://www.korebot.com

[2] Reeves, N., Nembrini, J., Poncet, E., Martinoli, A. and Winfield, A., “Voiles / Sails : Self-Assembling
Intelligent Lighter than air Structures”, Communication at the Generative Art 2005 Conference, Milan,
December 2005

[3] Romano de Santis, Class notes ELE6207, Commande des systèmes robotiques, École
Polytechnique
de Montréal, 2006

8/8

http://www.korebot.com/

	Abstract:
	A. Introduction
	1. The robot
	2. Purpose of the robot
	3. Main issues

	B. Control
	1. The selected controller types
	2. Coordinate system and approximative dynamic model
	3. The controllers in detail
	3.1. Fuzzy Control
	3.2. Sliding-Mode Control
	3.3 Pre-calculated couple

	C Experiments
	1. Test setup
	2. Results Fuzzy Logic
	3. Results Sliding mode control
	4. Results Pre-calculated couple control

	D. Conclusion
	References

