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1. Introduction

Following the two previous homeworks [1,  2],  different  output  feedback controllers  are 
designed for a pick-and-place robot. The gains are determined by solving linear matrix 
inequalities [3], using Yalmip [3] and Sedumi [4], considering nominal cases (design with 
no load mass) and uncertain cases, with a variable load-mass.
The performances are then compared to the state feedback controller  of  the previous 
homework [2].

2. The system

Figure 1: The pick and place robot

The  system studied,  a  serial  pick-and-place 
robot,  is  the  same  as  in  the  previous 
homeworks. For details refer to [1, 2]. 

It's parameters are:
Nominal mass fist member: m1=1kg
Nominal mass second member: m2=1kg

Load: m3=0−0.5kg
Nominal friction coefficients: k 1=k 2=0.1kg /s

Figure 2: Kinematic chain 

Gravity is regarded as a perturbation. The load mass m3  is added as uncertainty to m2 .

States: x=[ , x , ẋ , , z , ż ] '
Inputs: u=[F x ,Fz ] '
Output: y=[ ,x , ẋ , , z , ż ] '

ẋ=A xBu
y=C xD

with

A=[
0 1 0 0 0 0
0 0 1 0 0 0

0 0
−k1

m1m2
0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0
−k 2

m2

] , B=[
0 0
0 0
1

m1m2
0

0 0
0 0

0 1
m2

] , C=To be determined ,  D=0

(2.1)
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3. Static output feedback controller

In the previous homework, a state feedback controller was designed. To do this, it was 
assumed that the integrals   and   of both positions are known (And the matrix C is an 
identity matrix). Here the case is considered, where this is not so and only the positions 
and speeds can be measured.

The matrix C of the system is: 
C=[

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

]
(3.1)

And the static output feedback controller has the form: u=K y=K C x  [3]
(3.2)

3.1 Nominal case

The linear matrix inequality (LMI) stability theorem for the nominal system ẋ=ABKC x  
is [3]:

LMI stability theorem for nominal systems with output feedback controller [3]

There exists a static output feedback controller that stabilizes the nominal system if there 
exist symmetric and positive-definite matrices X  >  0  and Y  >  0  and Z that satisfy the 
following LMIs:

● X 0
● YC=CX
● XAT

AXBZCCT ZT BT
0

The controller gain is given by K=ZY −1

Solving these LMI's using Yalmip [4] and Sedumi [5], gives:

K=1.0e+007∗[−2.3636 −0.0001 0.0000 0.0000
0.0000 0.0000 −1.1706 −0.0000]

(3.1.1)

This gain is very high and thus it is very unrealistic to achieve in a physical system, as it 
will demand forces impossible to produce by real motors.
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Figure 3:  Simulink model of the static output feedback control
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Nominal Case with reduced gains

To reduce the computed gains, we can, on purpose, reduce the stability of the system by 
subtracting  A=−0.0001∗I  from A. The simulation will  then show what the effect this 
has.

To computed K in this case is: 

K=[−493.4954 −12.5369 0.0000 0.0000
−0.0000 −0.0000 −246.7391 −6.2170]

(3.1.2)

Simulation results

Figure 4:  Simulink simulation result for static output feedback using K (3.1.1).The commanded 
trajectory (red) and the real positions (blue) are coincident.

The positions for  the gain  (3.1.1)  [see Figure  4]  are  coincident  with  the commanded 
positions x_des and z_des. This is not surprising with such a high gains, but merely a 
theoretical result, as, as said before, physically this will demand forces not produceable.
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Figure 5:  Simulink simulation result for static output feedback using K 
(3.1.2).Commanded  trajectory (red), Real positions (blue).

Figure  5  shows that  the  result  for  the controller  that  was chosen to be “less  stable” 
(3.1.2). The controller is still able able to command the x state, while in z direction with 
the continuous perturbation of the gravity, a static offset is resulting. This is not surprising 
as the controller, not knowing the integral of z, does not contain any integral part. This 
was the same in (3.1.1,  but  as the gains are so much higher,  the static  offset is not 
visible.
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3.2 Uncertain case with load mass

The LMI theorem for norm-bounded uncertainties is:

Output  feedback  controller  LMI  stability  theorem  for  systems  with  norm-bounded 
uncertainties [3]

There exists a static  output  feedback controller  that  stabilizes the  uncertain system if 
there exist symmetric and positive-definite matrices X > 0 and Y > 0 and Z that satisfy the 
the following LMIs for all admissible uncertainties:

● X 0
● YC=CX

● [
Ju XEA

T CT ZT EB
T

E A X −AI 0
EB Z C 0 −B I ]0

Ju=XAT
AX BZCCT ZT BT

A D A D A
T
BDB DB

T

The controller gain is given by K=ZY −1

The uncertainties, due to the load mass, are the same as in [2]:

A=[
0 1 0 0 0 0
0 0 1 0 0 0

0 0 −k 1∗
1

m1m2
1 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 −k 2∗
1

m 2

2
]=[

0 1 0 0 0 0
0 0 1 0 0 0

0 0
−k1

m 1m 2
0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0
−k2

m2

]D AF A EA

with D A=[
0 0
0 0

1
m1m2m3max

−
1

m 1m 2
0

0 0
0 0

0
1

m 2m 3mac
−

1
m 2

] , F A1 ,1 =[ ? ] , E A=[ 0 0 −k1 0 0 0
0 0 0 0 0 −k 2

]

(3.2.1)

B=[
0 0
0 0

1
m1m2

3 0

0 0
0 0

0 1
m2

4

]=[
0 0
0 0
1

m 1m2 
0

0 0
0 0

0 1
m2

]DB∗FB∗EB  with DB=[
0 0
0 0

1
m1m2m3max

−
1

m 1m 2
0

0 0
0 0

0 1
m 2m 3mac

−
1

m2

] , 
F B1 ,1 =[ ? ] , EB=[ 1 0

0 1]
(3.2.2)
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As in the nominal case, to get reasonable gains, the system has to be made a bit less 
stable by adding  A=−0.0001∗I  to the system matrix A. This gives a gain K of:

K=[−103.0739 −21.7040 −0.0000 −0.0000
−0.0000 −0.0000 −100.7948 −13.2282 ]

(3.2.3)

Simulation results

Figure 6:  Simulink simulation result for static output feedback using K (3.1.3) 
and no load Commanded  trajectory (red) and  real positions (blue).

Figure 7:  Simulink simulation result for static output feedback using K (3.1.3) 
and 0.5kg load Commanded  trajectory (red) and  real positions (blue).

Results are similar to the nominal case (Section 3.1) and robustness for the whole range 
of  admissible  loads  (0-0.5kg)  is  given.  Again  a  static  offset  is  resulting  because  the 
controller without integral part, is not able to compensate for static gravity effect. The offset 
is of course bigger with the load as without the load, as the produced force is bigger.
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4. Observer-based output controller

A possible solution to the problems related to static output feedback is to do an observer-
based output feedback controller of the form [3]:

̇x=Aobs xBobs uLCobs x−y 
u=K x

Figure 8:  Simulink model of the observer-based output feedback control

(4.1)

4.1 LMI Approach

The matrix  inequality theorem (LMI) to find the observer gain L as well as the controller 
gain K that stabilize the system is:

LMI  stability  theorem  for  nominal  systems  with  observer-based  output  feedback 
stabilization [3]

If there exist symmetric and positive matrices X>0 and Q>O and matrices Y C  and Y O  
such that the following LMIs hold

1. A XX ATB Y CY C
T BTB∗BT0

2. [ AT QQ AY O CCT Y O
T K T

K −I ]0

Then the controller gains that stabilize the system are given by:
K=Y C X −1

L=Q−1Y O

The first LMI has to be solved in order to obtain the controller gain K, which is then used 
to find the observer gain L.
Trying to solve the second LMI using Yalmip [4] and Sedumi [5] however fails*. This does 
not mean that there are no gains L that stabilize the system, only that the LMI for the 
system in question is too restrictive or that the algorithms uses are not adequate.

*See observer_output_feedback_nominal.m
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4.2 Scientific guess approach

In fact it is quite easy to find some gains K and L thatstabilize the system by scientific 
guessing.

As seen in figure 9, the system can be stabilized with the following gains::

K=[−640.8073 −259.3156 −31.2388 0 0 0
0 0 0 −324.2877 −131.2287 −15.7623 ]

(4.2.1)

L=[
−10 0 0 0
−200 0 0 0

0 −100 0 0
0 0 −10 0
0 0 −200 0
0 0 0 −100

]
(4.2.2)

With the observer in place, there is no static offset as the integral of the positions is known. 
For  t<1s,  the z-position  does not  follow the desired trajectory  as the gravity  makes a 

10/17

Figure 9:  Simulink simulation result for observer-based output feedback using K (4.2.1), L (4.2.2)  and 0.5kg 
load. Commanded  trajectory (red) and  real positions (blue).
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sudden jump at the begin of the simulation from zero to 9.81m/s². The controller first has to 
saturate.  Once this  is  done and gravity  is  kept  constant,  the real  positions  follow the 
desired ones. It has to be noted that such a temporary error will result whenever the load 
mass of the robot is changed. 
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5. Performance comparison

5.1 Previous results for the state feedback controller

In the previous homework [2], a state feedback controller was designed for the same 
system. Using a K matrix of about the same dimensions*:

K=[−422.4529 −263.3477 −48.3451 −0.0000 −0.0000 −0.0000
0.0000 0.0000 0.0000 −184.3762 −115.2124 −21.1981 ]

(5.1)
*the bigger the A=a∗I  added to A, the faster is the response speed, but the higher the 
gains  K and thus the demanded forces.

It gives the following response to the same trajectory command as used to test the other 
controllers:

As in figure 10,  the controller  needs some time to correct  the error  introduced by the 
gravity at t=0. But once gravity is compensated, the control works.
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Figure 10:  Simulink simulation result for state feedback using K (5.1) and 0.5kg load Commanded  trajectory 
(red) and  real positions (blue).
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5.2 Static output feedback vs. state feedback

The main advantage of the static output feedback is, that it needs less information about 
the system than the full state feedback. It is able to control a system that does not undergo 
any static perturbations (see figures 5, 6 and 7, upper part for x), but produces an offset if 
such a perturbation, like gravity, is present  (see figures 5, 6 and 7, under part for z).

The offset can be reduced by increasing the gains (by choosing  A=Aa∗I , a0 ) , but 
for real systems with limited actuator power, there are limits to do this.

5.3 Observer based output feedback vs. static output feedback

A solution  to  this  static  offset  problem is  to  introduce an observer,  that  computes the 
estimated states x . The control part of the system however becomes more complex and 
more difficult to adjust (so did the LMI approach not work for the system in question).

5.3 Observer-based output feedback vs. state feedback

Using an observer-based output feedback instead of state-feedback, reduces the number 
of captors necessary while the performances of the two controllers are comparable (Figure 
9 and 10). In our example this means that the integral of the positions has to be given to 
the controller, but is computed in the observer part of the controller itself.
The cost of the additional computation power needed is nowadays smaller than the cost 
saved by the captor reduction. Further on with every eliminated captor, also the error risk 
due to failure of physical parts is reduced. 

6. Conclusion

The gains of the static output feedback control where successfully computed using the 
linear  matrix  inequality  theorem.  The  approach  however  can  not  overcome  the  main 
weakness of the static output feedback, to have permanent offsets if the affected states 
are  not  stable  in  open loop condition.  For  the pick  and place  robot  such an offset  is 
unacceptable and a observer-based output feedback has to be used in case that not all 
states are accessible. 
For the observer-based output feedback, gains that stabilize the system could be found by 
scientific guessing, while the LMI approach was not able to find them. 
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Appendix

static_output_feedback_nominal.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Script:       MEC 6313 Homework 3, static_output_feedback_nominal.m
% Description:  Finds the gains K to stabilize the system dx=(A+BKC)x+Bu
% Author:       Stefan Bracher
% Requirements: Yalmip (http://control.ee.ethz.ch/~joloef/yalmip.php)
%               Sedumi (http://sedumi.mcmaster.ca)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Some cleaning up %%%
clear all;
clc;
yalmip('clear');
 
%%% Parameters %%%
m1=1;       % Mass of the first moving member, including motor
m2=1;       % Mass of the second moving member
k1=0.1;     % Friction coefficient member 1
k2=0.1;     % Friction coefficient member 2
speed=-0.0001; % Additional(>0)/Reduction(<0) Reacion Speed (Deplacement of A matrix)
%speed=0; % Additional(>0)/Reduction(<0) Reacion Speed (Deplacement of A matrix)
 
%%% System %%%
A=[ 0   1    0            0     0    0;
    0   0    1            0     0    0;
    0   0   -k1/(m1+m2)   0     0    0;
    0   0     0           0     1    0;
    0   0     0           0     0    1;
    0   0     0           0     0    -k2/m2];
Almi=A+speed*eye(size(A));
B=[0            0;
   0            0;
   1/(m1+m2)    0;
   0            0;
   0            0;
   0            1/m2];
C=[0 1 0 0 0 0;
   0 0 1 0 0 0;
   0 0 0 0 1 0;
   0 0 0 0 0 1];
 
%%% LMI Variables %%%
n=size(C, 1);
m=size(C, 2);
l=size(B, 2);
X=sdpvar(m, m, 'symmetric'); 
Y=sdpvar(n, n, 'symmetric');
Z=sdpvar(l, n, 'full');
 
%%% LMI %%%
 F=set(X>0);            % X positive definit
 F=F+set(Y>0);            % Y positive definit
 F=F+set(Y*C==C*X);       % YC=CX
 F=F+set(X*Almi'+Almi*X+B*Z*C+C'*Z'*B'<0);    
 Sol=solvesdp(F);       % Solving it
 
%%% Extract Data %%%
X=double(X);
Y=double(Y);
Z=double(Z);
K=Z*inv(Y) 
[primal, dual]=checkset(F);   % Get primary and dual constraint residuals
 
if ((primal(1)>0)&&(primal(2)>0)&&(abs(dual(1))<1)&&(abs(dual(2))<1))
% The system is stable if the primal residuals are positive and the dual
% residuals are small
disp('The system is stable');       
else
disp('No information about the stability of the system can be given');
end
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static_output_feedback_uncertain..m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Script:       MEC 6313 Homework 3, static_output_feedback_uncertain.m
% Description:  Finds the gains K to stabilize the uncertain system 
%               dx=(A+BKC)x+Bu
% Author:       Stefan Bracher
% Requirements: Yalmip (http://control.ee.ethz.ch/~joloef/yalmip.php)
%               Sedumi (http://sedumi.mcmaster.ca)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Some cleaning up %%%
clear all;
clc;
yalmip('clear');
 
%%% Parameters %%%
m1=1;       % Mass of the first moving member, including motor
m2=1;       % Mass of the second moving member
m3max=0.5;  % Maximal Load Mass
k1=0.1;     % Friction coefficient member 1
k2=0.1;     % Friction coefficient member 2
speed=-0.0001;    % Additional(>0)/Reduction(<0) Reaction Speed (Deplacement of A matrix)
 
%%% System %%%
A=[ 0   1    0            0     0    0;
    0   0    1            0     0    0;
    0   0   -k1/(m1+m2)   0     0    0;
    0   0     0           0     1    0;
    0   0     0           0     0    1;
    0   0     0           0     0    -k2/m2];
Almi=A+speed*eye(size(A));
EA=[0 0 -k1 0 0 0;
    0 0 0   0 0 -k2];
DA=[0                               0;
    0                               0;
    1/(m1+m2+m3max)-1/(m1+m2)       0;
    0                               0;
    0                               0;
    0                               1/(m2+m3max)-1/m2];
 
B=[0            0;
   0            0;
   1/(m1+m2)    0;
   0            0;
   0            0;
   0            1/m2];
EB=eye(2, 2);
DB=DA;
 
C=[0 1 0 0 0 0;
   0 0 1 0 0 0;
   0 0 0 0 1 0;
   0 0 0 0 0 1];
 
%%% LMI Variables %%%
n=size(C, 1);
m=size(C, 2);
l=size(B, 2);
X=sdpvar(m, m, 'symmetric'); 
Y=sdpvar(n, n, 'symmetric');
Z=sdpvar(l, n, 'full');
epA=sdpvar(1, 1);
epB=sdpvar(1,1);
 
%%% LMI %%%
 F=set(X>0);            % X positive definit
 F=F+set(Y>0);            % Y positive definit
 F=F+set(Y*C==C*X);       % YC=CX
 
 F=F+set([
          X*Almi'+Almi*X+B*Z*C+C'*Z'*B'+epA*DA*DA'+epB*DB*DB'  X*EA'   C'*Z'*EB';
          EA*X  -epA*eye(2,2)   zeros(2, 2);
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          EB*Z*C  zeros(2, 2)     -epB*eye(2,2)
                                        ]<0);    
 
Sol=solvesdp(F);       % Solving it
 
%%% Extract Data %%%
X=double(X);
Y=double(Y);
Z=double(Z);
K=Z*inv(Y) 
[primal, dual]=checkset(F);   % Get primary and dual constraint residuals
 
if ((primal(1)>0)&&(primal(2)>0)&&(abs(dual(1))<1)&&(abs(dual(2))<1))
% The system is stable if the primal residuals are positive and the dual
% residuals are small
disp('The system is stable');       
else
disp('No information about the stability of the system can be given');
end
 

observer_output_feedback_nominal.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Script:       MEC 6313 Homework 3, observer_output_feedback_nominal.m
% Description:  Finds the gains K and L to stabilize the system
% Author:       Stefan Bracher
% Requirements: Yalmip (http://control.ee.ethz.ch/~joloef/yalmip.php)
%               Sedumi (http://sedumi.mcmaster.ca)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Some cleaning up %%%
clear all;
clc;
yalmip('clear');
 
%%% Parameters %%%
m1=1;       % Mass of the first moving member, including motor
m2=1;       % Mass of the second moving member
k1=0.1;     % Friction coefficient member 1
k2=0.1;     % Friction coefficient member 2
speed=3;    % Additional Reacion Speed (Deplacement of A matrix)
 
%%% System %%%
A=[ 0   1    0            0     0    0;
    0   0    1            0     0    0;
    0   0   -k1/(m1+m2)   0     0    0;
    0   0     0           0     1    0;
    0   0     0           0     0    1;
    0   0     0           0     0    -k2/m2];
Almi=A+speed*eye(size(A));
 
B=[0            0;
   0            0;
   1/(m1+m2)    0;
   0            0;
   0            0;
   0            1/m2];
 
C=[0 1 0 0 0 0;
   0 0 1 0 0 0;
   0 0 0 0 1 0;
   0 0 0 0 0 1];
 
%%% LMI Variables%%%
lineA=size(A, 1);   % Lines of A
colB=size(B, 2);    % Colums of B
X=sdpvar(lineA, lineA, 'symmetric'); 
Yc=sdpvar(colB, lineA, 'full');
 
%%% LMI Controller %%%
 F=set(X>0);            % X positive definit
 F=F+set(Almi*X+X*Almi'+B*Yc+Yc'*B'+B*B'<0);  % Controller
 Sol=solvesdp(F);       % Solving it
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 %%% Extract Data %%%
 X=double(X);
 Yc=double(Yc);
 K=Yc*inv(X);
 [primal, dual]=checkset(F);   % Get primary and dual constraint residuals
if ((primal(1)>0)&&(primal(2)>0)&&(abs(dual(1))<1)&&(abs(dual(2))<1))
% The system is stable if the primal residuals are positive and the dual
% residuals are small
disp('The controller part of the system is stable');       
else
disp('No information about the stability of the system can be given');
end
 
 %%% LMI Variables Observer %%%
 lineC=size(C, 1);    % Colums of C
 Q=sdpvar(lineA, lineA, 'symmetric');
 Yo=sdpvar(lineA, lineC , 'full');
 
 %% LMI Observer %%
 G=set(Q>0);            % Q positive definit
 G=G+set([Almi'*Q+Q*Almi+Yo*C+C'*Yo'    K';
            K -eye(2, 2)]<0); % Observer
 Sol=solvesdp(G);       % Solving it
 
 %%% Extract Data %%%
 Q=double(Q)
 Yo=double(Yo)
 
 %%% Show result %%%
K      
L=inv(Q)*Yo 
[primal2, dual2]=checkset(G);   % Get primary and dual constraint residuals
 
if ((primal2(1)>0)&&(primal2(2)>0)&&(abs(dual2(1))<1)&&(abs(dual2(2))<1))
% The system is stable if the primal residuals are positive and the dual
% residuals are small
disp('The system is stable');       
else
disp('No information about the stability of the system can be given');
end
 
checkset(G)
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