Physical Science

Unit 3

Law of conservation of mass

- Law of definite proportion
- Atomic Structure
- Isotopes

Image: Atomium by Kevin Christopher Burke https://www.flickr.com/photos/nomadicsun/2723649696/ Creative Commons 2.0 License https://creativecommons.org/licenses/by-nc/2.0/ Unit III

The student will be able to:

- write the name of an element up to atomic number 36, given the correct symbol or vice versa
- state the number of atoms of each element in a molecule of a compound, given its formula.
- state Dalton's Atomic Theory; describe the ways in which it is supported and rejected by modern models; state Thomson's, Rutherford-Bohr atomic model
- describe the structure of an atom and name the three major subatomic particles in an atom, and give their charges and relative masses.
- define atomic number and mass number.
- identify the element and state the number of electrons, protons and neutrons in an atom of the element, given its atomic number and mass number.
- define the terms ion, anion, and cation.
- state the number of electrons, protons, and neutrons in an ion, given the charge on an ion and its mass number.
- explain how two isotopes of a single element differ in their structure.
- compute the average atomic mass given the percentage and the mass of constituent stable isotopes.

Law of conservation of mass:

Mass is neither created nor destroyed in a chemical reaction.

Law of definite proportion:

A specific compound always contains the same proportion of elements by mass.

Phet Simulation: http://phet.colorado.edu/sims/html/balancing-chemical-equations/latest/balancing-chemical-equations_en.html

Stefan Bracher

Elements

- **Element:** One type of atom that can not be broken down by chemical means.
- **Name:** Planets, mythological figures, colours, scientists ...
- **Symbol:** Consists of 1 or 2 letter. Starts with capital letter.

Examples:

 \rightarrow Memorize the names and symbols of the first 36 elements in the periodic table

Atomic Models

Dalton:	Thomson:	Rutherford:	Rutherford-Bohr-Chadwick :	

Phet Simulation: https://phet.colorado.edu/en/simulation/hydrogen-atom

Stefan Bracher

Simplified model used in this class :

Nucleus:	Protons p+ (+, 1u Neutrons n ⁰ (no cha	I) arge, 1u
Electrons e ⁻ (-,	0.0006 u): Lowest shell: 2 nd shell : 3 rd shell:	2 8 16*
Shells fill up from lo the 3 rd shell contair filling up before cor	owest to highest. Howeve Is 8 electrons, the 4 th she npleting the 3 rd .	r, when II starts

Information from the periodic table:

Period (Line): Atomic number (on top): Group (Column): Number of electron shells Number of protons and electrons Number of Valence electrons (electrons in the outermost shell)

Atomic Models

Phet Simulation : https://phet.colorado.edu/en/simulation/build-an-atom

Information from the periodic table:

Period (Line): Atomic number (on top): Group (Column): Number of electron shells Number of protons and electrons Number of Valence electrons (electrons in the outermost shell)

Atoms of the same element with different mass. (Different number of **Isotopes**: neutrons)

- M : Mass number = Protons + Neutrons

Examples:

Phet Simulation:https://phet.colorado.edu/en/simulation/isotopes-and-atomic-mass

→ Do Unit III – Problem 8-13

Stefan Bracher

8

Charge

Net Charge : Number of protons – Number of electrons

Ion: Atom (or compound) with a net charge $\neq 0$

- Anion: Negative net charge
- Cation: Positive net charge

Review

Clicker Review Activity : Sec 4 – Atoms

http://b.socrative.com

STUDENT	TEACHER
Room Name	Email Address
JOIN ROOM	Password
	SIGN IN
	or
	g+ Sign in with Google
	Forgot your password? • Get a FREE account

• Atoms, Molecules and Ions in "College Chemistry"

http://cnx.org/contents/havxkyvS@9.110:zjMNbCdh@4/Introduction