

The student will be able to:

- define an acid and a base according to the Arrhenius Theory.
- name and write formulas of common acids and bases described in class.
- describe tests that can be used to distinguish between an acid, base and a salt.
- list three properties of acids and three properties of bases.
- describe the auto-ionization of water.
- define pH, and given H+ concentration as 10-x mol/L calculate pH = x and given pH = y calculate H+ concentration as 10-y for integers between 1 to 14.
- describe the difference between a weak and a strong acid, and between a weak and a strong base.
- describe the relative acidity of a solution, given the pH.
- define and describe electrolytes, electrical conductivity in solutions, and relative strength of electrolytes
- define and describe indicators; name two indicators and describe their colour changes.
- write and balance neutralization reactions between acids and bases.

Do it at home experiment:

"Red"-Cabbage

https://youtu.be/MNr4NBCpUQA

Images: Stefan Bracher

Acids

Acids:

- Compounds in aqueous solution formed by hydrogen and an anion (except hydroxide)
- Produce H+ or H₃0+ (Hydronium) in water
- Have a sour taste
- Are electrolytes
- Neutralize bases

 $HXYZ \rightarrow H^+ (aq) + XYZ^-(aq)$

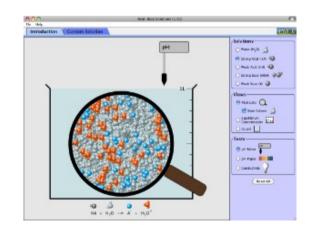
Formula:

HXYZ

Ionizable Hydrogen

Atom(s)

Examples:


hydrochloric acid sulfuric acid

sulfurous acid

HCl(aq)

 H_2SO_4

H₂SO₃

Phet-Simulation:

http://phet.colorado.edu/sims/html/acid-base-solutions/latest/acid-base-solutions_en.html4 Stefan Bracher Acids – Nomenclature: (see Unit 5)

Anion Name	Acid Type	Acid Name
+ ide	Binary acid	hydro + anion + ic acid
+ ate	Oxy-acid (Anion contains Oxygen)	anion + ic acid
+ ite	Oxy-acid (Anion contains Oxygen)	anion + ous acid

Don't forget to determine the correct amount of hydrogen in the formula, based on the charge of the anion!

Examples:	hydrochloric acid	HCl(aq)	
	sulfuric acid	$H_2^{SO_4}$	
	sulfurous acid	H_2SO_3	

Bases:

- Produce OH- in water
- Have a bitter taste
- Feel soapy
- Are electrolytes
- Neutralize acids

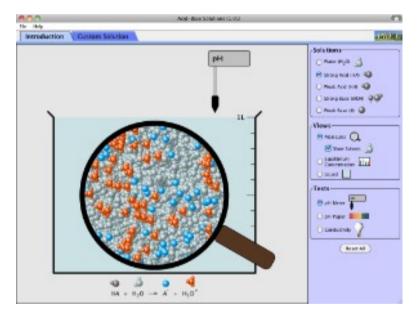
Formula: XYZOH

 $XYZOH \rightarrow XYZ^+ (aq) + OH^-(aq)$

Nomenclature: Follows the rules of ionic compounds → See Unit 5

Examples:

sodium hydroxide NaOH aluminum hydroxide $Al(OH)_3$ iron (III) hydroxide $Fe(OH)_3$


→ Do Unit IX Problem 2, 3, 4

And - Box Scient Institute | Contract Scientists | Contract Scient

Phet-Simulation:

http://phet.colorado.edu/sims/html/acid-base-solutions/latest/acid-base-solutions_en.html6

$$2 H_2 O \leftrightarrow H_3 O^+ + OH^-$$

Phet-Simulation:

http://phet.colorado.edu/sims/html/acid-base-solutions/latest/acid-base-solutions_en.html

Indicators

Indicator	Acid solution	Neutral solution	Basic solution
Litmus	red		blue
Phenolphthalein	transparent		red
Cyanidin	red	purple	blue

Red cabbage, raspberry and others

Images: Stefan Bracher

[→] Do Unit IX Problem 1

Neutralization:

$$2HCl(aq) + Ca(OH)_2(aq) \rightarrow CaCl_2(aq) + 2H_2O(l)$$

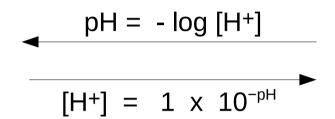
Others:

$$2HCl(aq) + Zn(s) \rightarrow ZnCl_2(aq) + H_2(g)$$

$$(CH_3CO_2)H + NaHCO_3 \rightarrow Na(CH_3CO_2) + H_2O + CO_2$$

pH:

- Logarithmic scale to measure the acidity of a solution


- pH < 7 : Acidic

- pH > 7 : Basic

Logarithms

 $x=10^{Y} \leftrightarrow y=log_{10}(x)$

рН

H⁺ Molarity

pOH

pOH = - log [OH-]

$$pH + pOH = 14$$

Molarity	рН	Nature	Example

1.0 x10⁻²

2

Acidic

Lime juice, Vomit

1.0 x10⁻⁵

5

Acidic

Coffee

1.0 x10⁻⁷

7

Pure Water

1.0 x10⁻⁸

8

Basic

Neutral

Detergents

1.0 x10⁻¹²

12

Basic

Bleach

| Soda Pop (pH 2.5) | Value |

Phet Simulation: http://phet.colorado.edu/sims/html/ph-scale/latest/ph-scale_en.html

Additional Resources

• Acid-Base Equillibria, OpenStax "College Chemistry" http://cnx.org/contents/havxkyvS@9.230:UhWgb0n7@3/Introduction