Physical Science

Image:

Unit 12A – Electrostatics

Unit XIIA

- Charged Objects
- Elementary Charge
- Coulombs Law
- Electric Fields
- Conductor / Insulator

"Electric Slide" by Ken Bosma via Flickr https://www.flickr.com/pnotos/1027134 Creative Commons 2.0 License https://creativecommons.org/licenses/hy/2.0/ The student will be able to:

- define positively and negatively charged objects.
- describe quantization of charges. Define the elementary charge.
- define Coulomb's Law
- describe electric field of charged particles and between charged particles to illustrate attraction and repulsion.
- define: conductor, insulator and electrolyte

Charged objects and elementary charge

Positively charged:	More protons than electrons
---------------------	-----------------------------

Negatively charged: More electrons than protons

Elementary charge: e=1.6x10⁻¹⁹ C

Charge of a proton:	+ e
Charge of an electron:	- e

Charge is quantized: Q=n*e

n: number of excess protons

3

How to charge an object

Friction :	Electrons transfer when rubbing two objects
Conduction :	Contact with a charged object
Induction :	A charged object is in proximity

Phet-Simulation: Balloons and static electricity http://phet.colorado.edu/en/simulation/balloons-and-static-electricity

Youtube Videos:

Bending water:https://www.youtube.com/watch?v=u-SIJSSBsjo&feature=youtu.beBalloon trick:https://www.youtube.com/watch?v=bjU-Ll6U1ig&feature=youtu.be

 \rightarrow Do Unit XIIA Problem 4, 6

Stefan Bracher

Coulombs Law

Electric Force : Force between two charged objects

Coulomb constant :

 $k_{\rm e} = 9 \text{ x } 10^9 \text{ N m}^2/\text{C}^2$

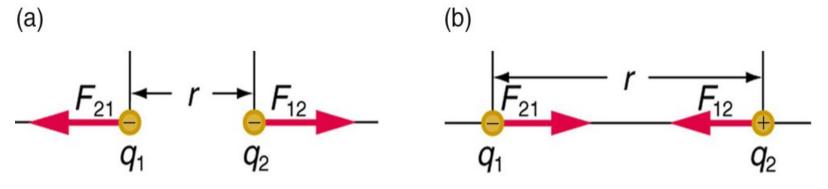
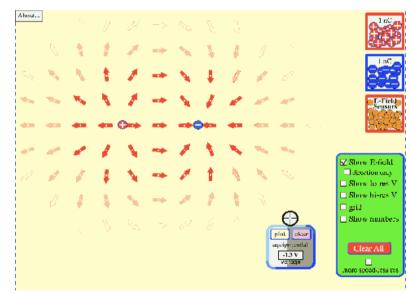


Image: OpenStax, College Physics. OpenStax CNX. April 21, 2016 http://cnx.org/contents/Ax2o07UI@9.31:4-YjJuu3@6/Coulombs-Law Creative Commons 4.0 License http://creativecommons.org/licenses/by/4.0/

$$F_e = k_e \cdot \frac{|(q_1)| \cdot |(q_2)|}{r^2}$$

Stefan Bracher


5

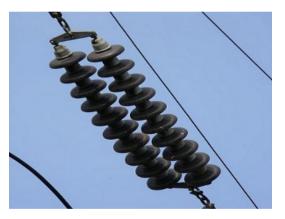
Electric field lines:

Direction of the electric force on a positive test charge

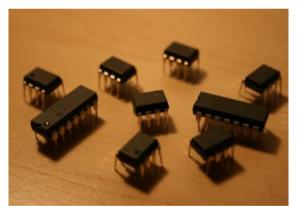
From + to -

Can never cross

Phet-Simulation: Charges and Fields


https://phet.colorado.edu/sims/charges-and-fields/charges-and-fields_en.html

Conductor and Insulators


Conductor: Charge can move freely (free electrons of metals or ions)
Electrolyte: Substance that makes water conducting (adding ions)
Insulator: Charges can not move freely (wood, glass, rubber, ...)
Semiconductor: Can behave as a conductor or insulator (Silicon, Gemanium)

Electric Plug made of conducting metal [1]

High Voltage Insulator [2]

Semiconductor Microchips [3]

 \rightarrow Do Unit XIIA Problem 1-2 and 9

Images:	
[1]	"Electric Plug" by Stefan Bracher
[2]	"High Voltage Transmission Line Insulator" by Biswarup_Ganguly
	https://commons.wikimedia.org/wiki/File:High_Voltage_Transmission_Line_InsulatorHowrah_2011-03-19_1874.JPG
	Creative Commons 3.0 License https://creativecommons.org/licenses/by/3.0/deed.en 7
[3]	"Semiconductor Microchips" by Stefan Bracher

• Electric Charge and Electric Field, OpenStax "College Physics" http://cnx.org/contents/Ax2o07UI@9.31:mbRj4L0x@3/Introduction-to-Electric-Charg