Formulas and Constants for College Physics

Stefan Bracher

10/08/24

Math + Measurement

Quadratic Equations

```
Quadratic Equation
```

hyp

Trigonometry

θ

Vectors Dot-Product

Trigonometric Identitiess Identities

 $\begin{aligned} &\sin(2\theta) = 2\sin(\theta)\cos(\theta) \\ &\sin^2(\theta) + \cos^2(\theta) = 1 \\ &\frac{1}{\cos^2(\theta)} = \tan^2(\theta) + 1 \end{aligned}$

Cross-Product

Addition/Subtraction

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \times \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \begin{bmatrix} a_y b_z - b_y a_z \\ a_z b_x - b_z a_x \\ a_x b_y - b_x a_y \end{bmatrix}$$

 $|\vec{a} \times \vec{b}| = a b \sin(\theta)$ (Applies to Right-Hand Coordinate Systems only) Head-to-Tail method or by components

Right hand coordinate system

z ↓ y ↓ x

Logarithms

Uncertainty

Absolute	$x = x_{avg} \pm \Delta x$	Uncertainty is obtained by:	 Estimation (<u>at least</u>, ½ the lowest increment)* Statistics (mean deviation, standard deviation) **
Relative	$x = x_{avg} \pm \frac{\Delta x}{x}$		* Usually much more (uncertainty of method, object, tool and observer add up)
			** typically more than 10 measurements are needed
Addition/Subtraction	$(x_{avg} \pm \Delta x) + (y_{avg} \pm \Delta y) = (x_{avg} + y_{avg}) \pm (\Delta x + \Delta y)$		
Multiplication/ Division	$(x_{avg} \pm \Delta x) * (y_{avg} \pm \Delta y) = x_{avg} * y_{avg} (1 \pm [\frac{\Delta x}{x_{avg}} + \frac{\Delta y}{y_{avg}}])$		
Min-Max Method	$x_{best} \pm \frac{x_{max} - x_{min}}{2}$		
Estimated Digit	The last written digit of a number is estimated. Only one written digit should be affected by the uncertainty	Example:	1.50 ± 0.04

Excel / LibreOffice / OpenOffice

General				
Typing formulas and equations		Click on a cell and type =	Fixing a cell reference	Add a \$ in front of the row or column. Ex. \$C\$4
Statistics				
Average		AVERAGE(Range)	Highest, Lowest Value	MIN(Range) , MAX(Range)
Mean Deviation (Uncer	tainty)	AVEDEV(Range)	Standard Deviation	STDEV(Range)
Slopes and Intercept				
Slope	INDEX(LINEST(Y_)	/alues,X_Values, TRUE,TRUE),1,1)	Intercept	INDEX(LINEST(Y_Values, X_Values, TRUE, TRUE), 1, 2)
Uncertainty of Slope	INDEX(LINEST(Y_)	/alues,X_Values, TRUE,TRUE),2,1)	Uncertainty of Intercept	INDEX(LINEST(Y_Values,X_Values, TRUE,TRUE),2,2)

Calculator Hints

Equation

Model	Sharp		Casio
	EL-520X	EL-W516X	fx-991 ES
Quadratic Equation	$Mode \rightarrow 2 \rightarrow 2$	$Mode \to 6 \to 2$	
System of equations	Mode $\rightarrow 2 \rightarrow 0$ / 1	Mode \rightarrow 6 \rightarrow 0/1	$\text{Mode} \rightarrow 5 \rightarrow 2$

Wolfram Alpha - http://www.wolframalpha.com/

Equation

	Example
Quadratic Equation	$3x^2 - 2x - 2 = 0 \rightarrow Enter$
System of equations	$3x+2y+7z=4$, $3x+y=0$, $y+z=0 \rightarrow$ Enter

Mechanics

1D Kinematics

Position	s=x , s=y or s=z (sign gives direction)	Position	$\vec{r} = (x, y, z)$
Displacement	$\Delta s = s_f - s_i$	Displacement	$\Delta \vec{r} = \vec{r}_f - \vec{r}_i = (\Delta x, \Delta y, \Delta z)$
Average velocity	$v_{av} = \frac{s_f - s_i}{\Delta t}$	Average velocity	$\vec{v_{av}} = \frac{\vec{r_f} - \vec{r}_i}{\Delta t} = \left(\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}, \frac{\Delta z}{\Delta t}\right)$
Instantaneous velocity	$v = \frac{ds}{dt}$ (slope of position)	Instantaneous velocity	$\vec{v} = \frac{d\vec{r}}{dt} = \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right)$
Average acceleration	$a_{av} = \frac{v_f - v_i}{\Delta t}$	Average acceleration	$\vec{a_{av}} = \frac{\vec{v_f} - \vec{v_i}}{\Delta t} = \left(\frac{\Delta v_x}{\Delta t}, \frac{\Delta v_y}{\Delta t}, \frac{\Delta v_z}{\Delta t}\right)$
Instantaneous acceleration	$a = \frac{d v}{d t}$ (slope of velocity)	Instantaneous acceleration	$\vec{a} = \frac{d\vec{v}}{dt} = \left(\frac{dv_x}{dt}, \frac{dv_y}{dt}, \frac{dv_z}{dt}\right)$
Five equations for CONSTANT acceleration	$\Delta v = at$ $\Delta s = 1/2(v_i + v_f)t$ $\Delta s = v_i t + 1/2 a t^2$ $\Delta s = v_f t - 1/2 a t^2$ $v_f^2 = v_i^2 + 2a \Delta s$	Five equations for CONSTANT acceleration	$\vec{v}_{f} = \vec{v}_{i} + \vec{a} t$ $\vec{r}_{f} = \vec{r}_{i} + 1/2 (\vec{v}_{i} + \vec{v}_{f}) t$ $\vec{r}_{f} = \vec{r}_{i} + \vec{v}_{i} t + 1/2 \vec{a} t^{2}$ $\vec{r}_{f} = \vec{r}_{i} + \vec{v}_{f} t - 1/2 \vec{a} t^{2}$ $v_{fyz}^{2} = v_{ayz}^{2} + 2a_{xyz} \Delta r_{xyz}$
Graphs	\rightarrow area \rightarrow area	Projectile Motion	
	a-t v-t s-t slope ← slope ←	Path	$\vec{r}(t) = \vec{r}_i + \vec{v}_i t + \frac{1}{2} \vec{a} t^2$
		Trajectory for $\vec{r}_i = 0$	$y = \tan(\Theta_i) x - \frac{g x^2}{2(v_i \cos(\Theta_i))^2}$

2D/3D Kinematics

Range for $\vec{r}_i = 0$

Circular motion

Angular position (Consider CCW of +x as positive)	$\theta = \frac{s}{r}$ [rad]	y v
Angular displacement*	$\Delta \theta = \theta_f - \theta_i$ [rad]	ā ā,
Average angular velocity	$\boldsymbol{\omega}_{av} = \frac{\boldsymbol{\theta}_f - \boldsymbol{\theta}_i}{\Delta t} [rad/s]$	r a _c s
Instantaneous velocity	$\omega = \frac{d \theta}{d t}$ (slope of angular position)	
Average angular acceleration	$\mathbf{\alpha}_{av} = \frac{\mathbf{\omega}_f - \mathbf{\omega}_i}{\Delta t}$ [rad/s ²]	
Instantaneous acceleration	$\alpha = \frac{d \omega}{d t}$ (slope of velocity)	
Five equations for CONSTANT angular acceleration	$\Delta \omega = \alpha t$ $\Delta \theta = 1/2 (\omega_i + \omega_f) t$ $\Delta \theta = \omega_i t + 1/2 \alpha t^2$ $\Delta \theta = \omega_f t - 1/2 \alpha t^2$ $\omega_f^2 = \omega_i^2 + 2\alpha \Delta \theta$	
Graphs	\rightarrow area \rightarrow area	Uniform Circular Motion (α=0)
	$\begin{array}{ccc} \alpha\text{-t} & \omega\text{-t} & \Theta\text{-t} \\ \text{slope} \leftarrow & \text{slope} \leftarrow \end{array}$	Circumference: $2\pi r$
		Poriod: T (time to go eround ence)

*While angular velocity and angular acceleration are vectors, angular displacement $\Delta \Theta$ is not. (Vector addition does not work)

 $\Delta x = \frac{v_i^2 \sin\left(2\Theta_i\right)}{g}$

Speed

Tangential acc.

Centripetal acc.

Conversion to linear entities Distance travelled $s = \Delta \theta r$

Linear acceleration: $\vec{a} = \vec{a}_1 + \vec{a}_c$

 $v = \omega r$ $a_t = \alpha r$

 $a_c = \frac{v^2}{r} = \omega^2 r$

Acceleration $\vec{a} = \dot{\vec{v}} = -a_c \cos(\theta(t))\hat{i} - a_c \sin(\theta(t))\hat{j}$

Classical (Galilean) Relativity

For two inertial* reference frames A and B

$=\vec{r_{PB}}+\vec{r_{BA}}$

Velocity of a point P: $\vec{v_{PA}} = \vec{v_{PB}} + \vec{v_{BA}}$

Acceleration of a point P: $\vec{a_{PA}} = \vec{a_{BA}}$

* Inertial Reference frame : A reference frame in which all laws of physics hold (typically a reference frame that itself is not accelerated)

Statics +Dynamics

	Linear	Rotational
Newton's 1st Law	$\vec{F_{net}} = 0 \Leftrightarrow \vec{a} = 0$	$\vec{\tau_{net}} = 0 \Leftrightarrow \vec{\alpha} = 0$
Newton's 2nd Law	$\vec{F_{net}} = m \vec{a}$	$\vec{\tau_{net}} = I \vec{\alpha}$
Newton's 3rd Law	$\vec{F}_{AB} = -\vec{F}_{BA}$	$\vec{\tau_{AB}} = -\vec{\tau_{BA}}$

Universal Law of Gravity	F_{G}
Hooke's Law	$\vec{F} =$

$F_G = G \frac{m}{m}$	$\frac{m_1}{r^2}$
$\vec{F} = -k \vec{x}$	

Torque	$\tau = rF\sin(\alpha)$, $\vec{\tau} = \vec{r} \times \vec{F}$
Rotational Inertia in General	$I = \int x^2 dm$
Parallel axis theorem	$I = I_{com} + m h^2$
Mass - distance L from axis.	$I = m L^2$
Beam, hinged at one side	$I = \frac{1}{3}mL^2$
Thin rod – perpendicular central axis	$I = \frac{1}{12} m L^2$
Solid sphere– central axis	$I = \frac{2}{5}m r^2$
Spherical shell – central axis	$I = \frac{2}{3}m r^2$
Solid cylinder – central axis	$I = \frac{1}{2}m r^2$

Work+Energy

Conservation of Energy	$E_{final} = E_{initial} + W_{by Force}$	Potential gravitational Energy:	PE=mgh
Work done by a force	$W = \vec{F} \cdot \vec{s} = F s \cos(\Theta)$	Potential spring Energy	PE=1/2kx ²
NCext: Non Conservative External force		Linear Kinetic Energy	KE= ½mv ²
		Rotational Kinetic Energy	KE= ½Ιω²
		Mechanical Energy	ME=PE+KE
Power [Watt]	$P = \frac{\Delta W}{\Delta t} = \vec{F} \cdot \vec{v}$	Potential Energy	$\Delta PE = -W_{by cons. F}$

Momentum

	Linear	Rotational		
Momentum	$\vec{p} = m \vec{v}$	$\vec{L} = \vec{r} \times \vec{p} = m \left(\vec{r} \times \vec{v} \right) = I \vec{\omega}$	Impulse	$\vec{J}\!=\!\Delta \vec{p}$
Newton's 2 nd Law	$\vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t}$	$\vec{\tau_{net}} = \frac{\Delta \vec{L}}{\Delta t}$	Inelastic collision :	Only momentum is conserved
Conservation of Momentum	$\vec{p}_f = \vec{p}_i + \vec{F}_{ext} \Delta t$	$\vec{L}_f = \vec{L}_i + \vec{\tau}_{ext} \Delta t$	Elastic Collision	Momentum and Mechanical energy is conserved

Waves and Optics

Simple Harmonic Motiv

Simple Harmonic Motion			
Frequency f [Hz]	F=1/T=ω/2π	Position:	$x(t) = x_m \cos(\omega t + \Phi)$
Angular Frequency ω [rad/s]	ω=2π/T=2πf	Velocity:	$v(t) = \frac{dx}{dt} = -v_m \sin(\omega t + \Phi)$
Period T [s]	T=1/f=2π/ω	Acceleration:	$a(t) = \frac{dv}{dt} = -a_m \cos(\omega t + \Phi)$
Mass and Spring	$\omega = \sqrt{\frac{k}{m}}$, $T = 2 \pi \sqrt{\frac{m}{k}}$	Torsion Pendulum	$T = 2 \pi \sqrt{\frac{I}{k}}$
restoring force	$F=m a(t) = -m \omega^2 x(t)$		
Kinetic / Potential Energy	$K = \frac{1}{2}mv(t)^2$, $U = \frac{1}{2}kx(t)^2$		
		restoring force	$\tau = -\kappa \Theta$
Simple Pendulum		Physical Pendulum	
restoring force	$\tau = -L F_s \sin(\Theta) = I \alpha$	restoring force	$\tau = -h_c F_g \sin(\Theta) = I \alpha$
for small angles	$\omega = \sqrt{\frac{g}{L}}$, $T = 2\pi\sqrt{\frac{L}{g}}$	for small angles	$\omega = \sqrt{\frac{mgh}{I}} , T = 2 \pi \sqrt{\frac{I}{mgh}}$
Mechanical Waves			
Wavelength [m]	$\lambda = \frac{2\pi}{k}$	Wave speed [m/s]	$v = \frac{\Delta x}{\Delta t} = \lambda f = \frac{\omega}{k} = \frac{\lambda}{T}$
Angular wave number [1/m]	$k = \frac{2\pi}{\lambda}$	Superposition principle	$y(x,t) = y_1(x,t) + y_2(x,t)$
Soft reflection (free end, denser to less dense)	No phase shift	Hard reflection (fixed end, less dens to denser medium	π
Transverse waves	$f(x,t) = \mathbf{h} (kx \pm \omega t)$ $f(x,t) = y_m \sin(kx \pm \omega t + \Phi)$	Longitudinal waves (Sound)	$s(x, t) = s_m \cos(kx \pm \omega t + \Phi)$ $\Delta p(x, t) = \Delta p_m \sin(kx \pm \omega t + \Phi)$
	+: moving left - : moving right	Sound Level (Decibel) $I_0 = 10^{-12} W/m^2$	$\beta = 10 dB \cdot \log_{10}(\frac{I}{I_0})$, $+1 dB = x 10$
Particle velocity / acceleration:	$u = \frac{\delta y(x,t)}{\delta t}$, $a = \frac{\delta u(x,t)}{\delta t}$	Intensity I	$I = \frac{P}{A} \qquad I = 10^{\frac{\beta}{10}} \cdot I_0$
Wave speed:	$\nu = \sqrt{\frac{\tau}{\mu}}$ τ =Tension, μ = linear density	Wave speed:	$v = \sqrt{\frac{B}{\rho}}$, B: Bulk modulus $B = \frac{-\Delta p}{\Delta V/V}$
Interference identical waves	s, shifted by $\Phi(=\Delta x/\lambda)$, traveling in the same	e direction	
$y'(x,t) = [2y_m \cos(\frac{\Phi}{2})]\sin(kt)$	$x - \omega t + \frac{\Phi}{2}$	$s'(x,t) = [2s_m \cos(\frac{\Phi}{2})] \cos(\frac{\Phi}{2})$	$s(kx\pm\omega t+\frac{\Phi}{2})$
(for different amplitudes, use	the Phasor-Diagram)	-	-
Constructive:	$φ = 2πm \text{ or } \Delta x = mλ, m=0, 1, 2,$	Deconstructive:	$φ = πm \text{ or } \Delta x = m\lambda/2, m = 1, 3, 5,$
		Beats	$f_{beat} = f_1 - f_2$
		Doppler Effect (classic)	$f' = f \frac{v \pm v_d}{v \mp v_s}$
Standing waves (identical	waves traveling in opposite directions)		
$y'(x, t) = [2 y_m \sin(kx)] \cos(\omega t)$ nodes: no amplitude antinodes: max amplitude	() () () () () () () () () () () () () (
String, both ends fix	$\lambda_n = \frac{2L}{n}, n = 1, 2, 3, 4$	Pipe, both ends open	$\lambda_n = \frac{2L}{n}, n = 1, 2, 3, 4$
		Pipe, open-closed	$\lambda_n = \frac{4L}{n}, n = 1, 3, 5$

 $\frac{1}{f} = \frac{1}{p} + \frac{1}{q} = (n-1)(\frac{1}{r_1} - \frac{1}{r_2}) , \quad m = \frac{h_I}{h_O} = \frac{-q}{p}$ p: Object distance

f: focal distance (f<0: Diverging, f>0: Converging)

q: Image distance (<0: Virtual, >0: Real)

A ray through the center goes straight through.
 A ray parallel to the axis goes through the focal point.

A ray through the focal point becomes parallel to the axis.

Geometrical Optics

Snells Law (Law of refraction) $n_1 \sin(\Theta_1) = n_2 \sin(\Theta_2)$, $\frac{n_1}{n_2} = \frac{v_2}{v_1} = \frac{\lambda_2}{\lambda_1}$

Law of reflection

 $\Theta_i = \Theta_r$

Ray diagrams for curved mirrors:

- 1. Any ray reflects according to the law of reflection at the tangent to the curve
- A ray parallel to the axis goes through the focal point. A ray through the focal point becomes parallel to the axis. 2. 3. f=radius/2

Wave Optics

Phase difference due to path traveled in different medium (number of wavelengths)	$N_2 - N_1 = \frac{L}{\lambda_0} (n_2 - n_1)$	Thin film interference	Add phase shift due to reflection and path difference to determine constructive and destructive interference.
Double Slit Interference		Double Slit Diffraction	
Maxima:	$d \cdot \sin(\Theta) = m\lambda$, $m = 0, 1, 2$	Maxima	Complicated
Minima	$d \cdot \sin(\Theta) = (m+0.5)\lambda, m=0,1,2$	Minima	$a \cdot \sin(\Theta) = m \lambda, m = 1, 2, 3$
Diffraction by a circular aperture	$\sin(\Theta) = 1.22 \frac{\lambda}{d}$	Diffraction Grating	Grating spacing: d=width/(# of gratings N)
Rayleigh's Criterion for resolvability	$\Theta_R = \arcsin\left(1.22\frac{\lambda}{d}\right)$	Maxima Lines	$d \cdot \sin(\Theta) = m\lambda$, $m = 0, 1, 2$
		First minimum	$N d \sin(\Delta \Theta) = \lambda$
		Half line width	$\Theta_{hw} = \frac{\lambda}{N d \cos(\Theta)}$

Thin lens equation:

Ray diagrams for Lenses:

Diopters D = 1/f

3.

Resolving power $R = \lambda_{avg} / \Delta \lambda = Nm$

Modern Physics

Nuclear Physics

$^{A}_{Z}X$	⁴ _Z X A: Mass number (Protons+Neutrons)		Radius of the nucleus	$r = r_0 A^{1/3}$ r ₀ : 1.2 fm (1.2 x 10 ⁻¹⁵ r	n)
	Z: Atomic number (charge of X: Chemical Symbol	the nucleus)			
Nuclea	r Equation	Mass number and Charge is conserved (Mass is not)	Binding Energy : $E_{BE} = \Delta m$.	$c^{2} = [(Z \cdot (m_{p} + m_{e}) + N \cdot m_{n}) - m_{tot}] \cdot c^{2}$	
			Z:	Number of protons	
			N:	Number of neutrons	
			m _{tot} :	Total mass of the isotope	
			m _p +m _e = <i>m</i> _{H-1} :	Mass of a proton + an electron (1.007 825 u	I)
			m _n :	Mass of a neutron (1.008 665 u)	
			C ² :	931.494013 MeV/u	
Radiat	ion / Decay				
		Event in Nucleus	Radiated particles		
α-Deca	ау	$-\frac{4}{2}He$	4_2He		
β-Deca	ау	${}^{1}_{0}n \rightarrow {}^{1}_{+1}p + {}^{0}_{-1}e + \bar{v}_{e}$	${}^{0}_{-1}e + \bar{v}_{e}$		
Positro	n-Decay	$^{1}_{+1}p \rightarrow ^{1}_{0}n + ^{0}_{+1}e + v_{e}$	$^{0}_{+1}e + v_{e}$		
γ-Deca	ау	Becomes stable	$^{0}_{0}\gamma$		
Numbe	er of radioactive nuclei:	$N(t) = N_0 e^{-\lambda t}$	Decay rate [Bq]:	$R(t) = \lambda N(t) = R_0 e^{-\lambda t}$	

Units of radiation

Activity	Decay events per second	\rightarrow	Becquerel [Bq] = disintegrations/ s	1 Curie = 3.7 x 10 ¹⁰ Becquerel
Absorbed Dose	Absorbed energy	\rightarrow	Gray [Gy] = Joules / kg	1 Gray = 100 rad
Biological Damage	Effect on humans	\rightarrow	Sievert [Sv] = Gray x Factor	1 Sievert = 100 rem

Quantum Physics

Energy of a photon	E = hf	Photoelectric Effect:	$K_{max} = e V_{stop}$, $h f = K_{max} + \Phi$,
Momentum of a photon	$p = \frac{hf}{c} = \frac{h}{\lambda}$		$V_{stop} = \left(\frac{n}{e}\right)f - \frac{\Phi}{e}$
De Broglie Wavelength	$\lambda = \frac{h}{p}$	Heisenbergs Uncertainty principle:	$\Delta x \cdot \Delta p_x \ge \hbar$ $\Delta y \cdot \Delta p_y \ge \hbar$ $\Delta z \cdot \Delta p \ge \hbar$
		$h=h/(2\pi)$	r z

Special Relativity

-				
First postulate: The laws of physics are the same for observers in all inertial reference frames. No one frame is preferred over any other.			Simultaneity is relative, it depends on the motion of the observer	Two observers in relative motion will in general not agree whether two events are simultaneous or not.
Second postulate: The speed of light in vacuum has the same value c in all directions and in all inertial reference frames.		Lorentz Factor:	$\gamma = \frac{1}{\sqrt{1 - (\nu/c)^2}}$	
Proper time t ₀	Time interval between two ever same location in an inertial ref	ents occurring at the erence frame.	Time dilation:	$\Delta t = \gamma \Delta t_0$
Proper length L₀:	The distance between two points measured in an inertial reference frame at rest relative to both points.		Length contraction:	$L = \frac{L_0}{Y}$
Rest Mass	The mass of an object as measured in a reference frame not moving relative to the object (the only mass that is directly measurable)		Momentum:	$p = m v \cdot \gamma$
Lorentz Transforma	tion	r' = v(r - vt)	Kinetic Energy	$KE = \gamma m c^2 - mc^2$
A system x'y'z't' mo relative to the syste	ving at a speed in x-direction m xyzt.	$\begin{array}{c} x - y (x - v) \\ y' = y \\ z' = z \end{array}$	Rest Energy	$E_0 = m c^2$
		$t' = \gamma \left(t - \frac{v}{c^2} x \right)$		
Velocities	$u' = \frac{u - v}{1 - \frac{uv}{c^2}}$		Minkowski Diagram	Graphical visualization of time dilation and length contraction
Doppler Effect $f = f_0 \sqrt{\frac{c - v}{c + v}}$			General Relativity	Generalization of the special relativity (allowing accelerations). Description of Gravity as a property of space time.
	$f = f_0 \gamma (1 - \frac{\nu}{c})$			property of space-time

Electricity

Charge, Coulombs Force, Electric Field and Potential

Q=N*e [C] Current i=dQ/dt [A] Charge is quantized Electric Field $\vec{E} = \frac{\vec{F}_e}{q} = k \frac{q_s}{r^2} \cdot \hat{r}$ [N/C] = [V/m] Coulombs Law $\vec{F} = k \frac{q_1 q_2}{r^2} \cdot \frac{\vec{r}}{r} \quad [N]$ (point charges) (point charge) Electric Force $\vec{F}_E = q \vec{E}$, $\vec{F}_E = -\frac{\partial U}{\partial \vec{s}}$ $\vec{E}_{tot} = \vec{E}_1 + \vec{E}_2 + \dots \vec{E}_n$ $\vec{E} = -\frac{\partial V}{\partial \vec{s}}$ Electric Field (in general) (in general) Electric Potential Energy $\Delta U = U_{\text{final}} - U_{\text{initial}} = -W_{\text{done by el. force}} \quad [J]$ (Electric) Potential $\Delta V = \frac{\Delta U_{el}}{a} = -\int \vec{E} \cdot \vec{ds} \quad [V]$ and Work done by the el. Difference Force $\Delta U_{el} = q \,\Delta V = -W_{el} = -\int \vec{F}_{el} \vec{s} = -\int q \vec{E} d\vec{s} \quad [J]$ Electric Potential due Electric Potential Energy $V = k \frac{q}{d}$ to a point charge Electron Volt $1 eV = 1.6022 \cdot 10^{-19} J$ Capacitors Capacitance Capacitance in $\frac{1}{C_{eq}} = \sum \frac{1}{C_i}$ $Q = Q_1 = \dots = Q_n \quad , \quad V = V_1 + \dots + V_n$ $C = \frac{Q}{V}$ [F] = Farad (Coulombs/Volt) Series: $\begin{array}{ll} C_{eq} \!=\! \sum C_i \\ Q \!=\! Q_1 \!+\! \ldots \!+\! Q_n \quad \text{,} \quad V \!=\! V_1 \!=\! \ldots \!=\! V_n \end{array}$ Parallel plate capacitor Capacitance in $E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{\varepsilon_0 A}$ Field: Parallel: $|(V)| = E \cdot d$ Potential: Capacitance: $C = \frac{\varepsilon_0 A}{A}$ Energy stored in a Energy density in the $U = \frac{Q^2}{2C} = \frac{1}{2}QV = \frac{1}{2}CV^2$ $u = \frac{1}{2} \varepsilon_0 E^2 [J/m^3]$ capacitor field of a capacitor:

+ to -

Current and Resistance

Current

Resistance

-^^/

resistor

Power dissipated in a

 $i = \frac{dq}{dt}$ [A]

 $R = \frac{V}{I}$ Ohm [Ω]=[V/A]

Technical direction:

Current density:

Resistivity

Conductivity

 $J = \frac{i}{A} = n \cdot e \cdot v_d$ A: Cross section area n: Charges per Volume / free electron density e: Charge of an electron v_d: Drift Speed: Speed of the charges in a wire

·d. 5…

$$\rho = \frac{E}{J} \quad [\Omega m]$$
$$R = \frac{\rho \cdot length}{area}$$

 $\sigma = \frac{1}{\rho}$

Electromotive Force (EMF)

Ideal EMF

╈

Can deliver as much current as required to maintain a fixed potential difference.

 $P = IV = I^2 \cdot R = P = \frac{V^2}{R}$ Watt [W]=[J/s]

Real direction of electrons in metals: - to +

Battery ε_1 r_1

Has an internal resistance. As soon as current flows, the terminal Voltage is different from the EMF

Some Energy is lost (transformed to heat) in the internal resistance.

Power delivered of an ideal EMF

 $P = EMF \cdot I$

Magnetism

Magnetic Fields and effect on moving charges

Tesla [T]	SI-Unit of the magnetic field $T = \frac{N \cdot s}{C \cdot m}$	Gauss [G]	Old unit of the magnentic field (not SI). 1 Gauss = Field strength of the magnetic field of the earth at the surface 1T = 10; G
Lorentz Force	$\vec{F}_{B} = q \cdot \vec{v} \times \vec{B}$ $F_{B} = \vec{Q} \vec{O} \cdot \vec{v} \cdot \vec{B} \cdot \sin(\Phi)$	Charged particles circulating in a magnetic field	$ (q) \cdot v \cdot B = m \frac{v^2}{R}$
Fore on a current carrying wire	$\vec{F}_{B} = i(\vec{L} \times \vec{B})$ $F_{B} = iLB\sin(\Phi)$	Cyclotron	$ (q) B=2\pi m f_{osc}$
Magnetic Dipole Moment	Unit: [A m ²] or [J/T] Magnetic Dipole Moment of a coil: $\mu = N i A$ N: Number of turns (Loops) i: Current A: Area of the loop	Velocity selector $\vec{E} \perp \vec{B}$	$ (q) E = (q) v B \sin(90^\circ) \rightarrow v = E/B$
Torque on a Magnetic Dipole	$\vec{\tau} = \vec{\mu} \times \vec{B}$		
Potential Energy of a Magnetic Dipole	$U(\Theta) = -\vec{\mu} \cdot \vec{B}$ $U(\Theta) = -\mu \cdot B \cos(\Theta)$		

Magnetic Fields due to currents

Law of Biot-Savart	Vector Form: $\vec{dB} = \frac{\mu_0}{4\pi} \cdot \frac{i \vec{ds} \times \hat{r}}{r^2}$. $\hat{r} = \frac{\vec{r}}{ (r) }$	Magnitude Form: $dB = \frac{\mu_0}{4\pi} \cdot \frac{i \cdot ds \cdot \sin(\theta)}{r^2}$
Magnetic field due to long straight wire at distance r	$B = \frac{\mu_0 i}{2\pi r}$	Magnetic field due to straight wire of finite $B = \frac{\mu_0 i}{4 \pi r} \cdot \sin(\alpha)$ length
		Angle: Section of the wire seen from the point. Wire: Must start perpendicular to the point
Magnetic field due to circular arc of wire	$B = \frac{\mu_0 i \Phi}{4 \pi r}$	Force between two parallel currents $F_{BA} = F_{AB} = i_B L B_A \sin(90^\circ) = \frac{\mu_0 L i_A i_B}{2 \pi r}$
	Angle in <u>rad!</u>	
Magnetic Field of a solenoid	If L>> D $B = \frac{\mu_0 N i}{L} = \mu_0 n i$	
	otherwise $B = \frac{\mu_0 N i}{\sqrt{(L^2 + D^2)}}$	
	N= turns	
	L= length	
	n= turns per meter	
	D= Diameter	

Currents due to magnetic fields

Magnetic Flux	$\Phi = B \cdot A \cdot \cos(\Theta) \text{ Unit: [Tm2] = [Wb]}$	Faraday's Law	$\left \left(EMF_{Induced}\right)\right = \left \left(N\frac{d\Phi}{dt}\right)\right $ N= turns
Transformer	$V_s = \frac{N_s}{N_p} V_p , I_s = \frac{N_p}{N_s} I_p$	Lenz's Law	The induced EMF creates a current I and a magnetic field B that oppose the change in magnetic flux

Inductors

Inductance L

RL-Circuit "turning on"

 $EMF = -L \frac{dI}{dt}$

$$I(t) = I_0(1 - e^{\frac{-t}{\tau}}) \quad , \quad \tau = \frac{L}{R}$$

Alternating current

$$V(t) = V_0 \sin(\omega t)$$

$$I(t) = I_0 \sin(\omega t - \phi)$$

[VsA⁻¹] = [H] (Henry)

 $\omega:$ Angular Angular Frequency [rad/s] $~\omega{=}2\pi f$ ϕ ; Phase shift (Delay of current behind voltage)

Average Power

Impedance

$$Z = \frac{V_0}{I_0} = \frac{V_{rms}}{I_{rms}} \quad \text{Ohm } [\Omega] = [V/A]$$

 $P_{avg} = V_{rms} I_{rms} \cos(\phi)$

Energy stored in an

Root mean square

RCL Circuit - Parallel

values

$$I(t) = I_0 e^{\frac{-t}{\tau}}$$
, $\tau = \frac{L}{R}$

$$V_{rms} = \frac{V_0}{\sqrt{(2)}}$$
$$I_{rms} = \frac{I_0}{\sqrt{(2)}}$$

 $E = \frac{1}{2} LI^2$

Instantaneous Power P(t) = V(t)I(t)

RCL Circuit - Series
$$Z = \sqrt{R^2 + (\omega L)^2}$$

 $\overline{\left(\frac{1}{\omega C}\right)^2}$ $\tan\left(\phi\right) = \frac{\left(\omega L - \frac{1}{\omega C}\right)}{R}$

Resonance fre

Presonance frequency:
$$\omega = \frac{1}{\sqrt{LC}}$$

 $\frac{1}{Z} = \sqrt{\frac{1}{R^2} + (\omega C - \frac{1}{\omega L})^2} \qquad \tan(\phi) = R(\phi)$

$$\operatorname{an}(\phi) = R\left(\frac{1}{\omega L} - \omega C\right)$$

Inductor (Reactance X_L)	$Z = \omega L$, $\phi = \frac{\pi}{2}$ (V leads, I behind)
Capacitor (Reactance X_c)	$Z = \frac{1}{\omega C}$, $\phi = -\frac{\pi}{2}$ (I leads, V behind)
Resistor (Impedance)	$Z = R$, $\phi = 0$

Physical Science

Significant Figures + Measurement

Measurements	The last digit of a measurement is always estimated (meaning, it is not certain)	Example :	1.05 cm \rightarrow meaning, it could have been 1.04 or 1.06 cm
Significant Figures	A number is significant when it is: - not a zero - a zero between non-zero digits - a zero after a-non zero on the right of the decimal point or on the left of the decimal point - in the coefficient of a scientific number	Examples :	 123 → 3 significant figures 1001 → 4 significant figures 1.00 → 3 significant figures 100. → 3 significant figures 1.00 x 10³ → 3 significant figures
	A zero is not significant when it is: - on the left of all non-zero digits - on the right of all non-zeros in a number without decimal point	Examples:	$\begin{array}{ccc} 0.03 & ightarrow 1 \ significant \ figure \\ 100 & ightarrow 1 \ significant \ figure \end{array}$
Exact numbers	Counted or definitions	Rounding Rules	>= 0.5 \rightarrow round up, < 0.5 \rightarrow round down
Calculation rules for sig	nificant figures		
Addition / Subtraction	Give the result with the fewest decimals	Examples:	1.00 + 2.3 = 3.3 5.5 - 0.50 = 5.0
Multiplication / Division	Give the result with the fewest <u>significant</u> figures.	Examples:	2.00 x 2.0 = 4.0 4/2.00 = 2
Density + Matter			
Density	Density = mass / Volume	States	
Matter	Has space and occupies volume	Solid	Definite shape and volume
Element	A collection of atoms of one type.	Liquid	Takes shape of the container, definite volume
Compound	A combination of atoms of different types	Gas	Takes shape and volume of the container
Mixture	A mix of different element or compounds	Heterogeneous	Differences in the mixture are visible
		Homogenous	No difference in the mixture is visible. It appears identical throughout.
Chemical Property	Ability to interact with other substances		
Chemical Change	New substances with new properties are formed	Signs:	Color change, bubbles, heat produced or adsorbed
Physical Property	Shape, State,		
Physical Change	Change in shape and state, no new substances are formed		
Atoms			
Dalton	Atoms are the smallest unit of matter. All atoms of one element are identical.		Billiard Ball
Thomson	Atoms are made of subatomic elements that are uniformly distributed		Plum pudding
Rutherford	Atoms are made of a small, dense, positive nucleus (protons and neutrons), and negative electrons orbiting the nucleus		Planetary model
Rutherford-Bohr	Like Rutherford, but the electrons are only found in distinct orbits.		Planetary model with only few existing electron orbits corresponding to energy levels.
Isotopes	Atoms of the same element but with a different mass number (= different number of neutrons)	Mass number	Number of Protons + Neutrons

Formulas and Constants for College Physics

Periodic Table (see Ann	ex 1)				
Periodic Table	 Atoms are ordered by ascending proton number (= atomic number) in groups (top down) of similar properties periods (horizontal) 		Atomic Number Symbol Atomic mass Element Name	Atomic Number : Number of protons Symbol: One or two letters. First letter is a capital letter Atomic mass : Average mass of all isotopes of the element (weighted by natural occurance) The unit of the number is amu/atom AND g/mol	
Alkali Metals (G1 excluding H)	Highly reactive, Soft with low melting point.	Me	etals	Left side of the Periodic Table	
Alkaline Earth Metals (G2)		No	on-Metals	Right side of the Periodic Table	
Transition Elements (G3-12)		Me	etalloids	Zig-Zag line between Metals and Non-Metals. Semiconductors	
Halogens (G7)	Highly reactive gases.	Di Me	iatomic olecules	Elements that in their elemental form come in pairs of two: H_2 , N_2 , 0_2 , F_2 , CI_2 , Br_2 , I_2 (Have N O Fear of Ice Cold Bear)	
Noble gases (G8)	Do not react with any other elements.				
Chemical Bonding					
Valence electrons	Electrons in the highest energy level of an atom (=Group Number for elements other than transition elements)	Lewis – Diagram Shows the valence electrons of an element			
Octet Rule	All elements want to achieve the valence electron configuration of the closest noble gas.		Metals	Achieve noble gas configuration by giving up valence electrons	
			Non-Metals	Achieve noble gas configuration by increasing the number of valence electrons	
			Metalloids	Can achieve noble gas configuration by increasing or decreasing the number of valence electrons	
Ionic Bond	Transfer of electrons	\rightarrow	Metal + Nonmetal, Polyatomic Ion + Nonmetal, Metal + Polyatomic I Polyatomic Ion + Polyatomic Ion		
Covalent Bond	Sharing of electrons	\rightarrow	Non-metal + N	Non-metals	
Metallic Bond	Transferring of electrons in an electron cloud	\rightarrow	Metals (making them conducting)		
Nomenclature					
Ionic Compounds	Metal can only have one charge	\rightarrow	Metal Name +	Non-Metal Name + ide	
	Metal can have different charges	\rightarrow	Metal Name (F	Roman Numeral for charge) + Non-Metal name + ide	
	Anion is a polyatomic Ion	\rightarrow	As above, but	without the -ide	
Polyatomic lons	Less oxygen	\rightarrow	Name of first e	element + ite	
	More oxygen	\rightarrow	Name of first e	element + ate	
	With hydrogen	\rightarrow	Bi + Name		
Covalent Compounds	Greek prefixes for numbers	\rightarrow	Greek Prefix +	+ Non-Metal + Greek Prefix + Non-Metal + + ide	
Acids	See acid section				

Moles and Chemical Reactions

Mol1 mol = 6.022×10^{23} particlesDefinition:1 mol is the number of particles in 12.01 g of
carbon.

Molar mass		Mass (in g) of one mol of a particles of a substance	For elements:	Mass given in periodic table (attention to diatomic substances!)			
			For compounds:	Example $C0_2$: Molarmass = 1x12.01gg + 2x16.00 g			
Chemical Read	ctions	Reactants \rightarrow Products	- No atoms are gained or lost - No mass is gainer or lost				
Combustion rea	action	Fuel + Oxygen \rightarrow Water and CO ₂					
Solutions							
Solution		A homogenous mixture of two or more substances	Solute	Substance of a solution that is in the smaller amount			
			Solvent	Substance of a solution that is in the larger amount			
			Solubility	The maximum amount of solute that a solvent can dissolve			
Molarity		$M = \frac{n}{V} = \frac{mol of solute}{L of solution}$	Dilution	$M_1V_1 = M_2V_2$			
Concentration	ı (by mass)	$C(\%m/m) = \frac{gof solute}{gof solution}$					
Acids and Ba	ises						
Acid	Generates	H ⁺ ions in water (producing H_30^+)	Binary Acids (H+ + NM-	Hydro + NM + ic + acid			
			Oxy-Acids ((H+ + Ion-)	lon ends in -ate \rightarrow ic acid (No hydro!) lon ends in -ite \rightarrow ous acid (No hydro!)			
Reactions	Acid + Met	$al \rightarrow H_2 + Salt$					
	Acid + Car	bonate \rightarrow CO ₂ + Water + Salt					
Base	Generates	OH- ions in water / Accepts H+					
Reactions	Acid + Bas	$se \rightarrow Water + Salt$					
рН	$pH = -\log \frac{1}{2}$	$\log\left(\frac{mol H_3 O}{L}\right)$, $\frac{mol H_3 O}{L} = 1 \times 10^{-pH}$	рН 07	Acidic			
	# of decim	al places of pH = # of sig. fig. of the coefficient	pH 714	Basic			
рОН	pOH=-	$\log(\frac{molOH}{L})$, $\frac{molOH}{L} = 1 \times 10^{-pOH}$	pH + pOH= 14				

Radioactivity and Nuclear Physics

 \rightarrow See Modern Physics

Transformation of Energy

Work	$W = F_{II} \cdot s = Fs \cos(\Theta)$	Potential gravitational Energy:	PE=mgh
Weight	$F_g = mg$	Linear Kinetic Energy	KE= ½mv²
Conservation of Energy	The total amount of energy of a closed system is always constant.	Mechanical Energy	ME=PE+KE
		Thermal Energy	Energy of random motion of atoms and molecules
Endothermic	Adsorbing energy	Heat (transfer of Thermal Energy)	$Q = \Delta E_{th} = mc \Delta T$
		merma Energy)	c: Specific heat capacity
Exothermic	Releasing energy		
Electricity and Magnetis	sm		
\rightarrow See sections on Electric	icity and Magnetism		
Genetics			
Genetics	The science of genes and heredity	Genotype	Genetic makeup
DNA	Deoxyribonucleic acid, blueprint of organisms	Phenotype	Visible traits (how the genotype is expressed)
Chromosomes	Organized structure of DNA	Mitosis	Normal cell division creating exact copies (full chromosome set)
Gene	Chunks of DNA containing the information for a character trait	Meiosis	Cell division for reproduction, half set of chromosomes
Allele	Variation of a gene.		
Dominant Allele	Hides the effect of another allele of the same gene	Homozygous	Having two identical alleles of a gene
Recessive Allele	Effect hidden when a dominant allele of the same gene is present	Heterozygous	Having two different alleles of a gene
Punnet Square	Diagram to predict the outcome of cross breeding	Law of segregation	Each parent only gives one allele to the offspring
Protein Synthesis	1. Transcription:	RNA	Ribonucleic Acid (similar to DNA, with U replacing T
	2 Translation:	mRNA	Messenger RNA. RNA that is leaving the nucleus
	Proteins are built from amino-acids with tRNA as transfer agents in the Ribosomes (outside the nucleus)	tRNA	Transfer RNA transporting amino-acids to the Ribosomes.
Biogeochemical Cycles			
Biogeochemical Cycles	Recycling of inorganic matter between living organisms and their environment	Examples	Water, Carbon, Nitrogen, Sulfur, Phosphorus
The phosphorus cycle	 Phosphorus released from rocks enters the set Plants absorb phosphorus through roots Phosphorus goes up the food-chain. Decomposing organisms release phosphorus Sediments form new rocks 	pil waste	

Constants and other properties

Constants

Mechanics		Electricity an	nd Magnetism	Modern Physics and Waves		
Universal Gravity constant G	6.67 10 ⁻¹¹ Nm²/kg²	Unit charge e	1.602x10 ⁻¹⁹ C	Speed of light in vacuum c	299792458 m/s	
g	9.8 m/s	k	9.00×10 ⁹ N•m ² /C ²	Planck Constant h	6.63x10 ⁻³⁴ Js	
		μ₀	4π×10 ⁻⁷ H/m	"h-bar"	$\hbar = hI(2\pi)$	
		ε ₀	8.85×10 ⁻¹² F/m			

Mass

Proton	1.007276 u	H-1	1.007 825 u	He-4	4.002 603 u	Zr-97	96.9109531 u	U-238	238.0507882
Neutron	1.008 665 u	H-2				Te-109	108.92742 u	U-235	235.043929 u
Electron	0.0005485799 u	H-3	3.016 05 u			Xe-113	112.93334 u	Th-234	234.0436012
C-12	12.0 u					Cs-133	132.905429 u	Ce-140	139.905434 u
						Xe-133	132.9059107 u	Te-137	136.92532 u
								Nd-144	143.910083 u

1 u = 1.6605x10⁻²⁷ kg

Half-life

U-238	4.5 !	10 ⁹ y	C-14	5730 y	H-3	12.3 y	Ir-192	74 d	Tc-99m	6 h
K-40	1.3 !	10 ⁹ y	Ra-226	1600 y			Fe-59	44 d		
Ra-226	1.6 !	10³ y					Cr-51	28 d		
							I-131	8 d		

Units

1 light year = 9.46 × 10 ¹⁵ m	1 u = 1.6605x10 ⁻²⁷ kg	1 eV = 1 .602 x 10 ⁻¹⁹ J	1 mol = 6.022 x 10 ²³ particles
Kelvin	Celsius + 273	1u·c²=931.494MeV	1 cal = 4.184 J
Celsius	5/9 (Fahrenheit-32)	1 T = 104 G	1 Cal = 1 kcal = 1000 cal

Prefixes

peta	Ρ	10 ¹⁵	deci	d
tera	Т	10 ¹²	centi	с
giga	G	10 ⁹	milli	m
mega	М	10 ⁶	micro	μ
kilo	k	10 ³	nano	n
			pico	р

deci d 10^{-1} centi c 10^{-2} milli m 10^{-3} micro μ 10^{-6} nano n 10^{-9} pico p 10^{-12} femto f 10^{-15}

Numbers (Greek, Latin)

1	Mono	I
2	Di	П
3	Tri	Ш
4	Tetra	IV
5	Penta	V
6	Hexa	VI
7	Hepta	VII
8	Octa	VIII
9	Nona	IX
10	Deca	х

Annex 1 - Periodic Table

This table is licensed by Rice University under a <u>Creative Commons Attribution License (by 4.0)</u>.

Download for free at http://cnx.org/contents/abe37363-0fb4-4018-868f-8ccc3ce7cad0@4/The-Periodic-Table