
Thermodynamics - Applications

- Heat Engines
- Efficiency
- Thermoelectric Modules (Peltier / Seebeck)
- Heat Pumps
- Heat exchangers

Heat Engine

Heat Engine: A device that uses heat transfer to do work

1st Law of Thermodynamics

$$E_{final} = E_{initial} + Q + W$$

 2^{nd} Law of Thermodynamics Heat travels from T_n to T_c

Image: OpenStax, College Physics. OpenStax CNX. 4. Nov. 2016

http://cnx.org/contents/Ax2o07UI@9.39:_RSOYYkJ@4/Introduction-to-the-Second-Law

Creative Commons 4.0 License http://creativecommons.org/licenses/by/4.0/

Heat Engine

Heat Engine Examples:

- Heated gas cylinder:

Heating a gas causes the gas to expand and move the piston (Work = F*s)

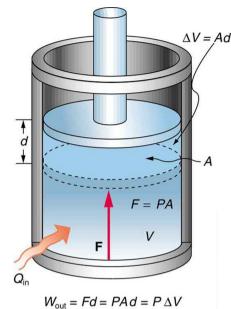


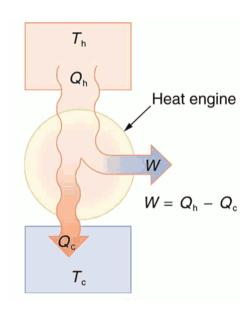
Image: OpenStax College, College Physics. OpenStax CNX. 2. Okt. 2018

http://cnx.org/contents/031da8d3-b525-429c-80cf-6c8ed997733a@14.2. Creative Commons 4.0 License http://creativecommons.org/licenses/by/4.0/

- Combustion engine
- Steam engine

Efficiency of a Heat Engine

Efficiency of a Heat Engine


$$Eff = \frac{W}{Q_h} = \frac{Q_h - Q_c}{Q_h}$$

W Q

Work done by the engine (work output)
Heat transfer **to** the engine (energy input)

 Q_{c}

Heat **leaving** the engine

2nd Law of Thermodynamics

- Heat travels from T_h to T_c
- The efficiency of a heat engine is always < 100%

Image:

OpenStax, College Physics. OpenStax CNX. 4. Nov. 2016

http://cnx.org/contents/Ax2o07UI@9.39:_RSOYYkJ@4/Introduction-to-the-Second-Law

Creative Commons 4.0 License http://creativecommons.org/licenses/by/4.0/

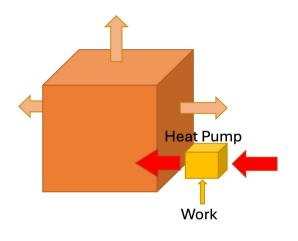
Efficiency in general

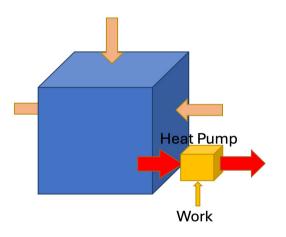
Efficiency

$$Eff = \frac{Useful\ Output}{Input}$$

Useful Output

Work or desired energy change


Input


Energy going into the device

Heat Pumps

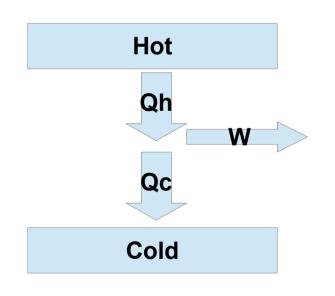
Heat Pumps: Use work to pump heat from cold to hot

Heat pumped > work needed (Efficiency > 100%

Efficiency

Useful Output Input

Stefan Bracher


Thermoelectric Modules (Peltier / Seebeck)

Thermoelectric Modules: Devices that convert between heat flow and

electric work. (See heat engine) and

Peltier: Electric work creates heat flow

Seebeck: Heat flow creates electric work

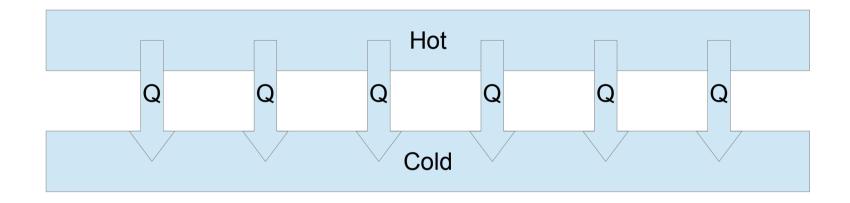
1st Law of Thermodynamics

$$E_{final} = E_{initial} + Q + W$$

2nd Law of Thermodynamics Heat travels from hot to cold

Compare

Heat engine/pump: Heat flow <-> Mechanical Work


Resistive heating: Electric Work -> Heat (one way)

Stefan Bracher

Heat exchanger

Heat exchanger

Heat flows from one fluid (hot) to another one (cold)

2nd Law of Thermodynamics Heat travels from hot to cold (until the temperatures are identical)

Additional Resources

- "The Ideal Gas Law" in "College Physics" Chapter 13.3
 - https://cnx.org/contents/Ax2o07UI@14.2:j0ywdp9f@7/13-3-The-Ideal-Gas-Law
- "The First Law of Thermodynamics and Some Simple Processes" in "College Physics" Chapter 15

https://cnx.org/contents/Ax2o07UI@14.2:xUMJ21t4@11/15-2-The-First-Law-of-Thermodynamics-and-Some-Simple-Processes

- "Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency" in "College Physics" Chapter 15
 https://cnx.org/contents/Ax2007Ul@14.2: RSOYYkJ@6/15-3-Introduction-to-the-Second-Law-of-Thermodynamics-Heat-Engines-and-Their-Efficiency
- Conservation of Energy Videos and Exercises at CCDMD https://energydev.ccdmd.qc.ca/